

DR. D. Y. PATIL VIDYAPEETH

PIMPRI, PUNE – 411 018

DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE

TATHAWADE, PUNE

SYLLABUS FOR

B. TECH. BIOTECHNOLOGY

2021-2022

DR. D.Y. PATIL VIDYAPEETH, PUNE DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE, **TATHAWADE, PUNE**

	URSE STRUCTURE FOR B. TECH. BIO SEMESTER I	1201		100		
Course Code	Course Name	L	Т	P	Hr	Cr
BS 101	Physics	3	0	2	5	4
BS 102	BS 102 Chemistry		0	4	7	5
DT 101	Electronics & Instrumentation	2	0	2	4	2
BT 101	Engineering	2	0	2	4	3
BI 101	Computers & C Programming	2	0	4	6	4
HU 101	Communication Skills	1	2	0	3	3
BS 103	Maths I – Mathematics	3	0	0	3	3
	Total	14	2	12	28	22
				1		
	SEMESTER II			-	-	-
Course Code	Course Name	L	Т	P	Hr	Cr
BT 201	Biochemistry	3	0	4	7	5
BT 202	Cell Biology	3	0	2	5	4
BS 201	Maths II -Statistics	2	0	2	4	3
BT 203	Engineering Mechanics	2	0	2	4	3
BS 202	Environmental Sciences	2	0	2	4	3
BT 204	Engineering Graphics	1	0	2	3	2
HU 201	Disaster Management*	0	1	0	1	-
	13	1	14	28	20	
	*Audit course, attendance is mu	ist		J		
	SEMESTER III					
Course Code	Course Name	L	Т	Р	Hr	Cr
BT 301	Analytical Techniques	3	0	4	7	5
BT 302	Microbiology & Virology	3	0	4	7	5
BT 303	Genetics	3	0	2	5	4
BI 301	Concepts in Bioinformatics	2	0	4	6	4
BT 304	Biosafety, Bioethics & IPR	2	0	0	2	2
HU 301	Universal Human Values II	2	1	0	3	3
	Total	15	1	14	30	23
				·		
	SEMESTER IV					
Course Code	Course Name	L	Τ	Р	Hr	Cr
BT 401	Molecular Biology	3	0	4	7	5
BT 402	Stem cells & Animal Tissue culture	2	0	2	4	3
BT 403	Plant Biotechnology	3	0	4	7	5
BT 404	Immunology	3	0	2	5	4
BT 405	Developmental Biology	3	0	2	5	4
	Total	14	0	14	28	21
		1		1		1

SEMESTER V				0	EEMED CAIVERSIT
Course Name	L	Т	Р	Hr	Cr
Environmental Biotechnology	2	0	2	4	3
BT 502 Recombinant DNA Technology		0	4	7	5
	3	1	4	8	6
Enzymology & Enzyme Technology	2	0	2	4	3
HU 501 Personality & Skill Development		0	0	2	2
R Programming	1	0	0	1	1
Elective-I	3	0	2	5	4
Total	16	1	14	31	24
Pathobiology)	Huma	an Di	isease	s and	
	L	Т	Р	Hr	Cr
	3	0	2	5	4
	2	0	2	4	3
Basic Pharmacology & Toxicology	2	0	0	2	2
	3	1	4	8	6
Artificial Intelligence	1	0	0	1	1
Elective II	3	0	2	5	4
Total	14	1	10	25	20
Elective II (Perl & Bioperl / Structural	Biolo	gy)			
SEMESTER VII					
Course Name	L	Т	Р	Hr	Cr
Molecular Modeling and Drug designing	2	0	4	6	4
Nanobiotechnology and Biosensors	2	0	2	4	3
Principles of Management & Entrepreneurial Development	2	0	0	2	2
Quality Control Management in	2	0	0	2	2
	3	0	0	3	3
Elective-III	3	0	2	5	4
Total	14	0	8	22	18
		gy/C	-		
Semester VIII					
Demester v III					
Research Project/Industrial Training/ Review writing (5 months)		2	0 Cre	dits	
	Course NameEnvironmental BiotechnologyRecombinant DNA TechnologyBiochemical Engineering & BioprocessTechnologyEnzymology & Enzyme TechnologyPersonality & Skill DevelopmentR ProgrammingElective-ITotalI (Biopharmaceuticals/ Clinical Research/Pathobiology)SEMESTER VICourse NameFood BiotechnologyMarine BiotechnologyBasic Pharmacology & ToxicologyGenomics, Transcriptomics and ProteomicsArtificial IntelligenceElective IICourse NameMolecular Modeling and Drug designingNanobiotechnology and BiosensorsPrinciples of Management & Entrepreneurial DevelopmentQuality Control Management in BiotechnologySeminars in BiotechnologySeminars in Biotechnology	Course NameLEnvironmental Biotechnology2Recombinant DNA Technology3Biochemical Engineering & Bioprocess3Technology2Enzymology & Enzyme Technology2Personality & Skill Development2R Programming1Elective-I3Total16I (Biopharmaceuticals/ Clinical Research/ Pathobiology)Hume PathobiologyCourse NameLFood Biotechnology & Toxicology2Basic Pharmacology & Toxicology3Artificial Intelligence1Elective II3Total14Elective II (Perl & Bioperl / Structural Biolo2Nanobiotechnology and Biosensors2Principles of Management and Drug designing2Nanobiotechnology3Semestrer VII2Guality Control Management in Biotechnology3Seminars in Biotechnology3Seminars in Biotechnology3Seminars in Biotechnology3Elective-III3Seminars in Biotechnology3Elective-IIII3Seminars in Biotechnology3Elective-III3Seminars in Biotechnology3Elective-IIII3Seminars in Biotechnology3Seminars in Biotechnology3Seminars in Biotechnology3Seminars in Biotechnology3Seminars in Biotechnology3Seminars in Biotechnology3 <t< td=""><td>Course NameLTEnvironmental Biotechnology20Recombinant DNA Technology30Biochemical Engineering & Bioprocess31Technology20Enzymology & Enzyme Technology20Personality & Skill Development20R Programming10Elective-I30Total161I (Biopharmaceuticals/ Clinical Research/ Humar Di Pathobiology)1SEMESTER VI1Food Biotechnology30Marine Biotechnology20Genomics, Transcriptomics and Proteomics31Artificial Intelligence10Elective II30Total141Elective II (Perl & Bioperl / Structural Biology)2V00Rodicular Modeling and Drug designing20Nanobiotechnology and Biosensors20Orriciples of Management & Entrepreneurial Development20Quality Control Management in Biotechnology20Seminars in Biotechnology30Elective-III30Seminars in Biotechnology30Elective-III30Elective-III30Elective-III30</td><td>Course NameLTPEnvironmental Biotechnology202Recombinant DNA Technology304Biochemical Engineering & Bioprocess314Technology202Enzymology & Enzyme Technology200R Programming100Elective-I302Total16114I (Biopharmaceuticals/ Clinical Research/ Pathobiology302SEMESTER VI190Food Biotechnology & Toxicology200Genomics, Transcriptomics and Proteomics314Artificial Intelligence1002Elective II30202Molecular Modeling and Drug designing2020Pinciples of Management in Biotechnology2020SEMESTER VII110002Elective II (Perl & Bioperl / Structural Biolechnology202Principles of Management & Entrepreneurial Development202Principles of Management in Biotechnology200Guality Control Management in Biotechnology300Biotechnology3000Elective-III3000Elective-III3000Elective-III300</td><td>Course NameLTPHrEnvironmental Biotechnology2024Recombinant DNA Technology3047Biochemical Engineering & Bioprocess3148Technology2024Personality & Skill Development2002R Programming1001Elective-I3025Total1611431I (Biopharmaceuticals/ Clinical Research/ Pathobiology)11431I (Biopharmaceuticals/ Clinical Research/ Pathobiology3025Marine Biotechnology3025Marine Biotechnology20024Basic Pharmacology & Toxicology20025Marine Biotechnology30255I ficial Intelligence10011Elective II30255Molecular Modeling and Drug designing2046Nanobiotechnology and Biosensors2024Principles of Management & Entrepreneurial Development2002Quality Control Management in Biotechnology30032Seminars in Biotechnology3003302Seminars in Biotechnology300</td></t<>	Course NameLTEnvironmental Biotechnology20Recombinant DNA Technology30Biochemical Engineering & Bioprocess31Technology20Enzymology & Enzyme Technology20Personality & Skill Development20R Programming10Elective-I30Total161I (Biopharmaceuticals/ Clinical Research/ Humar Di Pathobiology)1SEMESTER VI1Food Biotechnology30Marine Biotechnology20Genomics, Transcriptomics and Proteomics31Artificial Intelligence10Elective II30Total141Elective II (Perl & Bioperl / Structural Biology)2V00Rodicular Modeling and Drug designing20Nanobiotechnology and Biosensors20Orriciples of Management & Entrepreneurial Development20Quality Control Management in Biotechnology20Seminars in Biotechnology30Elective-III30Seminars in Biotechnology30Elective-III30Elective-III30Elective-III30	Course NameLTPEnvironmental Biotechnology202Recombinant DNA Technology304Biochemical Engineering & Bioprocess314Technology202Enzymology & Enzyme Technology200R Programming100Elective-I302Total16114I (Biopharmaceuticals/ Clinical Research/ Pathobiology302SEMESTER VI190Food Biotechnology & Toxicology200Genomics, Transcriptomics and Proteomics314Artificial Intelligence1002Elective II30202Molecular Modeling and Drug designing2020Pinciples of Management in Biotechnology2020SEMESTER VII110002Elective II (Perl & Bioperl / Structural Biolechnology202Principles of Management & Entrepreneurial Development202Principles of Management in Biotechnology200Guality Control Management in Biotechnology300Biotechnology3000Elective-III3000Elective-III3000Elective-III300	Course NameLTPHrEnvironmental Biotechnology2024Recombinant DNA Technology3047Biochemical Engineering & Bioprocess3148Technology2024Personality & Skill Development2002R Programming1001Elective-I3025Total1611431I (Biopharmaceuticals/ Clinical Research/ Pathobiology)11431I (Biopharmaceuticals/ Clinical Research/ Pathobiology3025Marine Biotechnology3025Marine Biotechnology20024Basic Pharmacology & Toxicology20025Marine Biotechnology30255I ficial Intelligence10011Elective II30255Molecular Modeling and Drug designing2046Nanobiotechnology and Biosensors2024Principles of Management & Entrepreneurial Development2002Quality Control Management in Biotechnology30032Seminars in Biotechnology3003302Seminars in Biotechnology300

SEMESTER I						
Course CodeCourse NameLTPHr				Cr		
BS 101	Physics	3	0	2	5	4
BS 102	Chemistry	3	0	4	7	5
BT 101	Electronics & Instrumentation Engineering	2	0	2	4	3
BI 101Computers & C Programming2046		4				
HU 101	HU 101 Communication Skills		2	0	3	3
BS 103	Maths I – Mathematics	3	0	0	3	3
Total 14 2 12 28 22					22	

COURSE: PHYSICS COURSE CODE: BS 101 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE

The objective of this course is:

- To create general understanding regarding basic physical principles involved in living systems.
- To familiarize the student with basic concepts in physics as: classical optics used in microscopes and telescopes, thermometry and heat, mechanical, fluid and solid state properties.
- To familiarize students with concepts in digital electronics, lasers, sound waves, electricity.
- To introduce them to concepts in modern physics such as: production of X-ray, X-ray crystallography, quantum mechanics etc.

COURSE OUTCOME

Upon successful completion of this course, students will be able to:

- Understand the basic concepts in physics
- Understand the principles of classical optics used in microscopes and telescopes, thermometry and heat, mechanical, fluid and solid state properties
- Demonstrate the concepts in modern physics such as- X-rays, crystallography and quantum mechanics
- Demonstrate the use of physical methods in biological applications

PREREQUISITES

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Optics: Interference	Introduction to optics, Principles of superposition,	08
	Diffraction &	Constructive & Destructive Interference, Types of	
	Polarization	Interference, Newton's rings.	
		Diffraction- Types of diffraction, Diffraction grating,	
		Rayleigh's criterion, Resolving power of Microscope and	
		Telescope.	
		Polarization of light waves, Polaroid, Optical activity.	
2	Thermometry and	Principles of Thermometry, Temperature and its	05
	Heat	measurements, Platinum resistance Thermometer,	
		Thermocouple and Thermistors, Modes of Heat Transfer.	
3	Properties of Fluid:	Surface Tension, Surface Energy, Angle of Contact,	07
	Surface Tension &	Capillarity action, Determination of Surface tension by	
	Viscosity	capillary rise method, Jaeger's method, Temperature	
		dependence of surface tension and its applications.	
		Viscosity, Coefficient of viscosity, streamline and turbulent	
		flow, Reynold's number, Stoke's law, Terminal velocity,	
		Determination of ' η ' by falling sphere method.	
4	Elasticity	Stress and Strain, Hook's law, Stress-strain curve, Young's	03
		modulus, Determination of Young's modulus.	
5	Solids and	Classification of Solids (Conductor, Semiconductor and	05

COURSE DESCRIPTION

		Total Lectures	45
		hypothesis, Heisenberg's Uncertainty principle.	
		effect, wave particle duality of radiation, de Broglie's	
		Plank's Quantum Theory, Properties of Photon, Photoelectric	
	Quantum Mechanics	systems.	
	Introduction to	Introduction to crystal structure, Unit cell, seven crystal	
	rays, Crystallography,	X-Ray diffraction and its Applications.	
10	Modern Physics: X-	Introduction to X-Rays : Introduction, Production of X-rays,	07
		Types of Transformers.	
9	Electricity	Heating effect of electric current, Joule's law, Transformers,	02
		effect, Applications of Ultrasonic waves.	
		Audible, Ultrasonic and Infrasonic waves, Beats, Doppler	
8	Sound waves	Types of sound waves (Longitudinal and Transverse),	03
		Helium Neon Laser, applications of Lasers.	
7	Lasers	Properties of Lasers, Production mechanism, Ruby Laser,	03
	Electronics	logic gates, De-Morgan's Theorem	
6	Introduction to Digital	Introduction to Binary mathematics, BCD numbers, Basic	02
		mode)	
	Devices	Junction Diode, Zener Diode, Junction Transistors (CE,CB	
	Semiconductor	Insulators), intrinsic and extrinsic semiconductors, PN	

METHODOLOGY

The course will be covered through lectures supported by practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

- Physics by D. Haliday and R. Resnik 5th edition, Wiley Eastern Pub, 2007.
 Perspectives of Modern Physics by A. Beiser, 6th edition, Mc Graw Hill, 2003.
 Fundamensls of optics by F. A. Jenkins and H. E. White, 4th edition, Mc Graw Hill, 1976.
 Optics by A. Ghatak, 3rd edition, Tata Mc Graw Hill, 2006.
- 5. Digital Principles and Applications by A. P. Malvino, G. Saha and D. P. Leach, 7th edition, Mc Graw Hill, 2011.

PRACTICAL IN PHYSICS (TWO HOURS PER WEEK) Marks 50

The practical training would be in the area of optics, electronics, thermometry, calorimeter, conductivity, measurement of physical properties as: viscosity and surface tension.

LIST OF EXPERIMENTS

- 1. Diffraction Grating: Use of diffraction grafting for determination of wavelength of spectral lining.
- 2. Resolving Power: To determine the resolving power of Microscope or telescope.
- 3. Diode Characteristics: Study of forward and reverse characteristics of Diode.

Transistor Characteristics: Study of characteristics of Photocell.

- 4. Band gap of semiconductor: Study of input and output characteristics of a transistor and determination of band gap of a semiconductor.
- 5. Ultrasonic Interferometer: Determination of velocity of ultrasonic waves by ultrasonic
- 6. Study of logic gates (OR, AND, NOT).
- 7. Thermocouple: Study of variation of thermo emf (electromotive force) with temperature.
- 8. Surface Tension: Determination of the surface tension of a given solution.
- 11. Viscosity: Determination the coefficient of viscosity by Stoke's method and its practical application.
- 12. Joule's Law: Determine of Joule's constant.
- 13. Determination of wavelength of monochromatic light by Newton's rings experiments.
- 14. Thermal Conductivity: Determination of coefficient of thermal conductivity of given specimen.

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

COURSE: CHEMISTRY

COURSE CODE: BS 102 MARKS: 200

Dr. D.Y. PATIL VIDYAPEETH, PUNE

L T P Hr C 3 0 4 7 5

OBJECTIVES:

The objective of the course is:

- The objective of this course is to familiarize the student with the different concepts of physical and organic chemistry.
- The students will learn the structures of organic molecules as: alkanes, alkenes, alkynes, aliphatic and aromatic molecules and the stereochemistry behind the molecules with its importance in day today life
- They would learn the Basic concepts and principles with respect to physical chemistry, the bioenergetics of different reactions and the principles and applications of radioactivity.

COURSE OUTCOME:

At the end of course, students will have the ability to:

- Demonstrate the structures and stereochemistry of different organic molecules
- Understand the concept of different physical chemistry aspects like osmosis that plays an important role in any biological system
- Explain and apply the concepts of pH and viscosity and to prepare buffers
- Demonstrate the principles of bioenergetics in chemical reactions and also of living systems
- Understand the formation of isotopes and their significance

PREREQUISITES

This is the first introductory course and there are no prerequisites.

Course Description

Sr no	Topics	Description	Hrs.
1	Introduction to organic chemistry	Functional groups, Chemistry of alkanes, alkenes, alkynes, aromatic, alicyclic and heterocyclic compounds	7
2	Stereochemistry	Stereo isomers, Enantiomers, Chiral centers/ Optical activity, Geometric isomers Meso- isomers, Conformational isomers, Stereochemistry of Cyclic Aliphatic compounds,	8
3	Reaction mechanisms	Nucleophilic (SN1, SN2, Electrophilic E1 and E2)	3
4	Basic concepts and principles of Physical Chemistry	Osmosis- Diffusion, Osmotic Pressure, Theories of Osmosis. Viscosity –Introduction & Types of viscometer. Colloids-Lyophilic & Lyophobic sols, Optical properties, Electrical properties of sols, Gold number. Donnan Equilibrium. Phase rule- Phase, Components & Degree of freedom. Derivation of Phase rule. Phase diagram. Water system. Acid-bases- Three concepts of acids &	11

Total Lectures			
6	Basic principles of radioactive isotopes	Isotopes in Biology- Properties, Half-life, Radioactive decay. Measurement of radioactivity- Methods based on Gas ionization (Ionization chamber, Proportional counter, Geiger counter), Photographic methods, Methods based on Excitation (Liquid & solid Scintillation counting), Quenching. Use of Isotopes-Tritium, Iodine-131, Nitrogen-15, Oxygen-18, Carbon-14, Phosphorus- 32, Sulphur-35.	9
5	Bioenergetics	Numerical.First & Second laws of Thermodynamics, Internal energy, Enthalpy, Entropy, concept of free energy, Standard free energy change of a chemical reaction, ATP & high energy phosphates compounds. Chemical equilibrium constant, Nernst equation	6
		bases, pH meter & types of electrodes ,Buffer solution, Acid base indicator , Law of mass action,	

Methodology

The course will be covered through lectures, demonstration and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1. Organic Chemistry by R. T. Morrison and R. N. Boyd, 7th Edition, Prentice Hall, 2011.
- 2. Organic Chemistry by I. L Finnar, 6th Edition Pearson Publications, 2002.
- 3. Physical Chemistry by A. Peter and P. Julio De 7th Edition, Oxford University Press, 2010.
- 4. Essentials of Physical Chemistry by B.S. Bahl & A. Tuli, S Chand & Co. 2000.
- **5.** Biophysical Chemistry by A. Upadhyay, K. Upadhyay & N. Nath., Himalayan Publishing House. 2005.

-

MARKS 100

PRACTICAL IN CHEMISTRY (4 Hrs. PER WEEK)

Sr. No.	Name of the experiment	Learning objective
1	Acid-Base Titration	To understand the concept of titration and how to calculate the strength of acid and base.
3	Back Titration	To analyze the concentration of analyte based upon chemical reaction.
4	Qualitative Analysis	The practical will help in detection of functional groups present in the chemical compound. (Can be combined with other small practicals-at least 4-5 samples)
5	Determination of optical activity using a Polarimeter	Help them to analyze the degree of rotation of plane polarised light
6	Viscosity, Osmosis and Diffusion techniques	To analyze the physical properties of compound by measuring i) hypotonic, isotonic and hypertonic nature ii)thickness, sticky and semifluid consistency
7	Demonstrate the procedure for determining Melting/Boiling point	The practical will teach them how to analyze the transition point from solid to liquid and ii) liquid to vapor phase.
8	To determine the pH of a solution using a polarimeter	It will guide them to measure the pH of a solution in terms of H+ ion concentration and to understand importance of pH in biological experiments.
9	Study of exothermic and endothermic reactions.	To understand the concept of thermodynamics of reaction based upon the absorption or release of heat energy.
10.	Conductivity meter	Measuring the electrical conductivity of a solution. Applications in hydroponics, aquaculture and freshwater systems
11	Determine the heat of combustion of ethyl alcohol	To measure the amount of heat energy released during a chemical reaction.
12	Determine the heat of neutralization of strong acid and strong base	To measure the change in enthalpy in a neutralization reaction to form water and a salt.

BOOKS RECOMMENDED:

- 1. Practical Organic Chemistry: Qualitative Analysis by S.P. Bhutani, A.Chhikara, ANE Books, 2009.
- 2. Laboratory Manuals In Biochemistry by J. Jayaraman, New Age International Private Ltd., 2000.
- 3. Experimental Physical Chemistry, By V. D. Athawale, P. Mathur, New Age International Private Ltd., 2000.
- 4. College Practical Chemistry, By V. K. Ahluwalia, S. Dhingra, Universities Press, 2005.

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: ELECTRONICS AND INSTRUMENTATION ENGINEERINGCOURSE CODE: BT 101L T P Hr CMARKS: 1002 0 2 4 3

OBJECTIVE:

Objective of the course is to familiarize students with the basic concepts of electronic engineering and electronics engineering.

This knowledge would help them in applying them in various biological techniques. Also the Knowledge of this subject will form a profound base for the instrumentation used in various advanced courses of Biotechnology and Bioinformatics.

COURSE OUTCOME:

On successful completion of the course students will:

- Be familiarized with the basic concepts of electronics
- Understand the basic concepts of electronic circuits and be aware of the circuits in various instruments
- Have clarity over the application of concepts in digital electronics.
- Acquire the knowledge of instrumentation, for working of various analytical instruments used for biological samples

PREREQUISITES:

Since the course is very basic in nature, school level knowledge of physics and mathematics is required.

Sr. No	Торіс	Description	Hrs
1	Basics	History and scope of electronics, Electrical signals,	2
		passive electronic components, resistors, capacitors,	
		inductors, Bio signals	
2	Semiconductor devices	Diode circuits, P-N junction diode, biasing, half wave	2
		and full wave rectification	
3	Linear integrated circuits	Introduction to operational –amplifiers, characteristics	8
		of op-amp, virtual short and virtual ground, concept of	
		feedback, inverting and non-inverting amplifier,	
		applications of op-amp, addition, subtraction,	
		integration, and differentiation	
4	Digital electronics	Digital circuits, AND, OR, NOT, NAND, NOR, EX-	8
		OR, EX-NOR, Boolean algebra, half adder, full adder,	
		multiplexers and de-multiplexers, flip-flops, shift	
		registers, counters, block diagram of microprocessor	
		and microcontroller	
5	Basic instrumentation	Sensors and transducers, basic measurement system,	6
		static and dynamic characteristics of an instrument,	
		signal conditioning circuits	
	Total	Number of lectures	30

COURSE DESCRIPTION

METHODOLOGY:

The course will be covered through lectures, demonstration and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Digital Electronics by R. K. Jain, Tata Mc Graw Hill, 3rd Edition, 2003.
- 2. Grob's Basic Electronics M. E. Schultz., Tata McGraw Hill, 10th Edition 2006.
- 3. Principals of electronics By V. K. Mehta , S. Chand Publisher , 1st Edition , 2010.
- 4. Op Amps and linear integrated circuits By R. Gaikwad, McGraw –Hill publishing company limited, 4th Edition, 2002.
- 5. Integrated Electronics By Millman and Halkias. Mcgraw-Hill, 3rd Edition 1972.
- 6. The Z 80 Microprocessor By R. Gaonkar, Penram Publisher, 3rd Edition, 1988.
- 7. A course in electrical and electronic measurements and instrumentation by A. K. Sawhney, P. Sawhney, Rai publisher, 1996.

PRACTICALS ELECTRONICS AND INSTRUMENTATION ENGINEERING (2 Hrs. PER WEEK) MARKS 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
1	Study of passive components in electronics Resistors, Inductors, capacitors, relay, switches, transformers and connectors.	Students should able to learn different passive components, their classification, symbol, and unit.	Principles of Electronics by V.K.Mehta and R. Mehta, S. Chand, 2005
2	Study of basic electronics measuring instruments DMM, CRO and function generator.	Students should able to operate CRO, function generator to generate different electrical signals. They should able to measure Voltage, current, frequency and time period of	
3	Study of semiconductor devices, P-N junction Diode. Plot VI characteristics of P-N junction diode.	waveforms. Students should able to learn different semiconductor devices like diode, transistors and also working of PN junction diode. They should able to plot VI characteristics graph.	
4	Study of operational amplifierPart I : Op-amp IC741Part II: Op-amp as inverting and non-inverting amplifier.	Students should able to learn basic working principle of op-amp, pin diagram of IC 741.	
5	Study of digital logic circuits.	Students should able to learn different logic gates, their truth table and timing diagram.	
6	Study of pH electrode.	Students should able to understand operation of pH electrode for the measurement of pH.	
7	Study of resistance type temperature transducers.	Students should able to learn working principle of different resistance type temperature transducers like PRT, RTD, Thermistor, thermocouple	Basic electronics by J.S. Katre, Techmax publication, 2014
8	Study of conductivity meter electrode.	Students should able to understand the operation of conductivity meter	Theory and applications of

		electrode to measure conductivity of a	conductivity
		solution.	http://www.evisdo
			m.com/
9	Study of 8085 microprocessor.	Students should able to understand pin	http://8085projects.i
		diagram, block diagram and	nfo/
		architecture of 8085 microprocessor.	

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

COURSE: COMPUTERS AND C PROGRAMMING COURSE CODE: BI 101 MARKS: 150

L T P Hr C 2 0 4 6 4

OBJECTIVE:

The objective of the course is

- To familiarize the students with computers and programming concepts.
- Programming module is intended to familiarize them with computer logic and solution of real world problems.

COURSE OUTCOME

At the end of this course, students will be able to:

- Understand the organization of computers and the basic principles of Computing
- Deal with the basics problems that arise while using computers
- Demonstrate the basics of C Programing and their applications
- Apply programming for solving biological problems by logic based approach

PREREQUISITES

The course requires the basic knowledge about the Computer system. **COURSE DESCRIPTION**

Sr No	Торіс	Description	Hrs
1	Organization of Computer	History of computer and various parts and functions performed by them	1
2	Hardware & Software	Various hardware of computer, Application software and system software	1
3	Operating System	Various functions of operating system, MS-DOS, LINUX commands	1
4	Basics of programming	Machine language, High level language, Compilation process	1
5	Introduction to C	An overview of C, C expressions, Operators, Data types	1
6	The Decision controls in C	The 'if' statements within <i>if</i> , Multiple statements within <i>if</i> , The ' <i>if-else</i> ' statement, The ! operator Hierarchy of Logical Operators, The Conditional Operators	2
7	Loop control structures	Loops, The ' <i>While</i> ' Loop, The ' <i>for</i> ' loop, Nesting of Loops, Multiple Initializations in the for loop The ' <i>Odd</i> ' Loop, The ' <i>break</i> ' statement, The ' <i>continue</i> ' statement, The ' <i>do-while</i> ' statement	5
8	Case control structures	Decisions using switch The <i>goto</i> statement	1
9	Functions	What is a function? Why Use Functions	3

		(DEEMED UNIVERSITY
	Passing values between functions, Scope	
	of functions	
Array & strings	Single-dimension Arrays, Generating a	3
	Pointer to an array, Passing single dimension	
	arrays to functions, Strings, Two-dimensional	
	Arrays, Arrays of Strings, Multidimensional	
	Arrays, Array Initialization, Variable-Length	
	arrays	
Puppeting on strings	What are Strings? ,More about Strings	4
	Pointers and Strings ,Standard Library String	
	Array of pointers to Strings,	
Pointers	Pointer variables ,The pointer Operators ,Pointer	2
	1 0	
	Allocation Arrays	
Structures, Union,	Structures, Arrays of structures, Passing structures	2
• •	to functions, Structure Pointers, Unions, Bit-Fields	
definition	Enumerations Typedef	
File Handling in C		3
	e e	
	functions	
	tal Number of Lectures	30
	Puppeting on strings Puppeting on strings Pointers Structures, Union, Enumeration & type definition File Handling in C	of functionsArray & stringsSingle-dimension Arrays, Generating a Pointer to an array, Passing single dimension arrays to functions, Strings, Two-dimensional Arrays, Arrays of Strings, Multidimensional Arrays, Array Initialization, Variable-Length arraysPuppeting on stringsWhat are Strings? ,More about Strings Pointers and Strings, Standard Library String functions ,Two-Dimensional Array of Characters, Array of pointers to Strings,PointersPointer variables ,The pointer Operators ,Pointer Expressions ,Pointers and Arrays ,Initializing Pointers ,Pointers to Functions, C's Dynamic Allocation ArraysStructures, Union, Enumeration & type definitionStructures, Arrays of structures, Passing structures to functions, Structure Pointers,Unions, Bit-Fields Enumerations ,TypedefFile Handling in COpening and closing a stream, open modes, Reading and writing to/from a stream, Predefined streams: stdin, stdout and stderr, Stream manipulation: fgetc(), fputc(), fgets() and fputs() functions

METHODOLOGY:

The course will be covered through lectures, demonstration and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

RECOMMENDED BOOKS:

- 1. The complete reference of C by H. Schildt, 4th edition, Mc Graw Hill, 2003.
- Let us C By Y. Kanitkar, 15th edition, BPB Publication, 2017.
 Data Structure Through C by Y. Kanitakar, 2nd edition, BPB Publication, 2003.
- 4. Understanding Pointers in C by Y. Kanitakar, 4th edition, BPB Publication, 2007.
- 5. Data Structure using C and C++ by A. M. Taneumbam, 2^{nd} edition, PHI, 2017.
- 6. Computers Fundamentals by P K Sinha and P. Sinha, 6th edition, BPB publications, 2004.

PRACTICAL IN COMPUTERS & C PROGRAMMING (4 Hrs. PER WEEK) **MARKS: 100**

Sr. No.	Practical Name
1	Introduction to Microsoft Word and Microsoft Power point
2	Introduction to Microsoft Excel and MS-DOS commands
3	Programs on basic programming in C
4	Programs using Decision Controls in C
5	Programs using while, do-while and for Loop
6	Programs using Case Control Structure, odd loop
7	Programs illustrating use of function
8	Programs illustrating use of arrays
9	Programs using Pointers and Structure
10	Programs illustrating use of String
11	Programs for file handling in C
12	Programs for Biological application
	 Finding complement of DNA ORF finding Inverted Repeats
	 Motif finding Translation Transcription

RECOMMENDED BOOKS

- The complete reference of C by H. Schildt, 4th edition, Mc Graw Hill, 2003.
 Let us C By Y. Kanitkar, 15th edition, BPB Publication, 2017.
 Data Structure Through C by Y. Kanitakar, 2nd edition, BPB Publication, 2003.
 Understanding Pointers in C by Y. Kanitakar, 4th edition, BPB Publication, 2007.
- 5. Data Structure using C and C++ by A. M. Taneumbam, 2^{nd} edition, PHI, 2017.

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: COMMUNICATION SKILLS COURSE CODE: HU-101 MARKS: 100

L T P Hr C 1 2 0 3 3

OBJECTIVE:

The objective of this course is:

- To develop communication skills amongst students,
- To familiarize students with communication elements,
- To acquaint them with the scientific reading, Writing & Presentation skills.
- To familiarize students with concepts in plagiarism.

COURSE OUTCOME:

Completion of this course will enable the students to:

- Display skills in different and appropriate ways of communication
- Demonstrate competence in different types of documentations like scientific report writing and research papers
- Demonstrate better presentation skills
- Understand the concept of plagiarism and the ways to avoid it

PREREQUISITES:

This is an introductory course and there are no prerequisites.

Sr. no.	Topics	Description	Hrs.
1	Introduction to	Elements, definitions	02
	communication	Scope of communication and communication as part of	
		science	
2	Communication	Verbal and nonverbal communications.	03
	elements	Principles of effective communication, Oral presentations,	
		Barriers to communications, Use of good English:	
		Introduction to English Grammar: parts of speech, use of	
		articles & prepositions, use of correct tense, spellings etc.	
3	Scientific reading,	Introduction to scientific reports and writings?	07
	writing & presentation	Compilation of experimental data, Communication methods	
		in science, Use of good English in science, Examples of	
		Scientific and Unscientific writing.	
		Process of Scientific writing: thinking, planning, rough drafts	
		and revising context.	
		Different styles of scientific writing APA, MLA or Chicago.	
		Writing papers	
		Reviews and Bibliography	
4	Plagiarism	Introduction to Plagiarism	03
		Examples of Plagiarism	
		Total Number of Lectures	15

COURSE DESCRIPTION :

METHODOLOGY

The course will be covered through lectures supported by tutorials. During tutorials, students would be made to present scientific and nonscientific data/information using different communication skills. They would be corrected as and when needed and taught how to improve their skills in reading, writing and data presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1. Technical Writing and Professional Communication by T. N. Huckin and L. O. London, William Collins and Sons, 1990.
- 2. Business English and Communication- By L. Clark and Zimmer, New York Mcgraw Hill, 1990.
- 3. Developing Communications by K. Mohan and M. Banerji, Macmillan India Limited, 2000.

COURSE: Maths I - MATHEMATICS COURSE CODE: BS-103 MARKS: 100

L T P Hr C 3 0 0 3 3

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics.

COURSE OUTCOME

At the end of this course, students will be able to:

- Understand basic concepts in mathematics
- Solve problems related to logarithms, trigonometry and functions
- Demonstrate mathematical methodologies to solve biological problems like pH, viscosity, buffer preparation, etc.

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the 10+2 level they should have cleared the core mathematics in the first semester.

Sr.	Topics	Description	Lectures
1	Algebra :	Logarithms: Definition of Logarithm (Natural and common logarithm, Laws of Logarithm. Binomial Theorem: Definition of factorial notation, peronntation & combinations, Binomial Theorem for positive index. General term, middle term, Binomial theorem for any index Binomial Theorem for Approximation	06
2	Trigonometry	Trigonometric Rations (t-ratios): t-ratios of any angle, Relation between t-ratios, Fundamental identities, Quadrants sign of T-ratios in various quadrants, T-ratios of negative angles T-ratios of Allied, Multiple and Submultiples angles, Factorization formulae, Defactorization formulae. Inverse Trigonometric Functions: Definition of Inverse t- functions	03 08
3	Function and Limit	Function: Definitions of variable, constant, intervals such as open, closed, semi-open etc., Definitions of function, value of function, domain & range of a function. Limits: Concepts and definition of Limit, Limits of algebraic functions, trigonometric functions, exponential functions, logarithmic function	02
4	Derivatives	Derivatives: Definition of Derivatives, notations, Rules of Derivatives (without proof), Derivatives of composite functions, Derivatives of Inverse trigonometric function by substitution method, Derivatives of Implicit functions, Logarithmic differentiation, Second order differentiation Application of Derivatives: Geometrical meaning of the derivatives, Equations of Tangent & normal to the given curve, Maxima & Minima.	05
5	Integration	Integration: Definition of integration, Integration of	03

COURSE DESCRIPTION.

	Т	otal Number of Lectures	44
		iv) Linear D.Ev) Bernoulli"s D.E.	
		iii) Exact D.E	
		ii) reducible to variable separable form	
		i) Variable separable type.	
		Solution of D.E. of first order & first degree such as:	
	(D.E.)	D.E for function containing single constant.	
5	Differential Equation	Definition of D.E., order & degree of D.E., formation of	03
		curves, Area between two curves.	
		Application of Definite Integrals: Area under the	02
		definite, Definite integral with simple problems	
		Definite Integration: Definition of Definite integral,	02
		determine constant of Integration.	
		rationale functions; Trigonometric functions to	
		Standard function; Rules of Integration, Integration of	(DEEMED UNIVERSITY)

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		05
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Mathematics for Biological Science by J. Arya & Ladner, Prentice Hall, 1979.
- 2) Numerical methods by E. Balguruswamy, Tata Mc Graw Hill Publications Pvt Ltd., 1999.
- 3) Higher Engineering Mathematics by B. S. Grewal, Khana Publication, New Delhi, 2003.
- 4) Applied Mathematics by P. N. Wartikar, Pune Vidaypeeth, Griha Prakashan, Pune, 2010.
- 5) Introductory Methods of Numerical analysis by S. S. Sastry, Prentice Hall of India, New Delhi. 2005.

	SEMESTER II					
Course Code	Course Name	L	Т	P	Hr	Cr
BT 201	Biochemistry	3	0	4	7	5
BT 202	Cell Biology	3	0	2	5	4
BS 201	Maths II -Statistics	2	0	2	4	3
BT 203	Engineering Mechanics	2	0	2	4	3
BS 202	Environmental Sciences	2	0	2	4	3
BT 204	Engineering Graphics	1	0	2	3	2
HU 201	Disaster Management*	0	1	0	1	-
	Total 13 1 14 28 20					
	*Audit course, attendance is must					

COURSE: BIOCHEMISTRY COURSE CODE: BT-201 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

Biochemistry is the study of chemical reactions that occur in living organisms in order to maintain the cellular and physiological activities of life. Biochemical reactions maintain a homeostasis between the synthesis and degradation of products. The objective of the course is to familiarize the students to these various structures and reactions occurring in one's own body and the other living organisms.

COURSE OUTCOME:

On successful completion of the course, students will:

- Understand the fundamental biochemical principles such as structure and functions of various biomolecules
- Know the reactions of the major metabolic pathways of carbohydrate, lipid and amino acid metabolism
- Demonstrate an understanding of the regulation of biochemical processes
- Understand the molecular basis of various pathological conditions from the perspective of biochemical reactions
- Know the significance of Biochemistry in understanding biological process and functioning of living organisms

PREREQUISITES:

The course requires that the students shall be aware about the basics of chemistry and biomolecules.

Sr.	Торіс	Description	Hrs
No			
1.	Biomolecules and Bioenergetics	Carbohydrate: Structure and classification of Monosaccharides, Oligosaccharides and Polysaccharides. Derived sugars.	3
		Amino acids: Structure, classification and properties	2
		Protein: Classification and functions Structure: Primary, Secondary, tertiary, quaternary	3
		Nucleic acids: Structure of nucleotides, DNA and RNA	2
		Fatty acids and lipids: Structure and classification. Compound lipids	2
		Enzymes: Classification and concept of regulation	2
		Vitamins and coenzymes	2
2.	Survey of metabolism	Introduction to metabolism-catabolism, anabolism and intermediary metabolism.	1
3.	Glycolysis	Glycolytic pathway and energetics	2
		Anaerobic pathway of glucose metabolism	1
4.	Gluconeogenesis and Glycogen Metabolism	Bypass reactions, Regulation of gluconeogenesis by enzymes and hormones.	2

COURSE DESCRIPTION

	Т	otal Number of lectures	45
9.	Biosynthesis of amino acids and its regulation	Glutamate, glutamine, arginine from α- ketoglutatrate	4
8.	Amino acid metabolism	Transamination, deamination and decarboxylation reactions, Urea cycle	2
		Oxidative phosphorylation, structure of ATPase enzyme, chemiosmotic hypothesis.	2
7.	Electron transport chain and Oxidative phosphorylation	Complexes I, II, III and IV, components of electron transport chain and their structure. Reactions of the electron transfer.	2
		β -oxidation of monounsaturated and polyunsaturated fatty acids, Energetics of β oxidation.	3
6.	Lipid Metabolism	Requirement of carbon dioxide and citrate for biosynthesis, FAS complex and regulation of biosynthesis	3
5.	Citric acid cycle	Aerobic pathway of glucose metabolism. Balance sheet. Regulation of the cycle.	3
		Glycogenolysis and glycogenesis	4

METHODOLOGY:

The course should be taught through interactive lectures and demonstrations, which will help all the students to correlate the subject to everyday activity.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1. The principles of Biochemistry, Lehninger by D. Nelson, and M. Cox, 7th edition, M. W.H. Freeman and Company, New York, 2017.
- 2. Metabolic Pathways by D. M. Greenberg, 3rd edition, Academic Press, Elsevier Science & Technology Books, 2014.
- 3. Biochemistry by L. Stryer, 7th edition, W.H. Freeman and Company, New York, 2012.
- 4. Biochemistry by J. M. Berg, J. L. Tymoczko, L. Stryer, 6th edition, W.H. Freeman and Company, New York, NY, 2007.
- 5. Biochemistry by G. Zubay, Addison-Wesley Educational Publishers Inc, 1983.
- 6. Outlines of Biochemistry by E. Conn and P. Stumpf, 5th edition, John Wiley & Sons, 2009.
- Principles of Biochemistry by D. J. Voet, J. G. Voet, C. W. Pratt, 3rd edition, (International Student Version), John Wiley and Sons, Inc., 2008.

PRACTICAL IN BIOCHEMISTRY (4 Hrs. PER WEEK)

MARKS 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of standard solutions.	To understand the concepts of Normality, Molarity, Molality and ppm.	An Introduction to Practical Biochemistry by D. T. Plummer, 3 rd edition, Tata McGraw Hill
2	Verification of Beer Lambert's law and determination of λmax of CuSO4/KMnO4 solution.	To understand the basic principles of colorimetry	Education Private Limited, New Delhi, 2011.
3	To find out the pka value of glycine using titrimetric method.	Study of principles of titrimetry and understanding the concepts of pH, pKa, and pKb.	
4	Qualitative analysis of carbohydrates (Monosaccharides, disaccharides and polysaccharides)	To understand the chemistry of a compound and the importance of different reagents.	 Experimental Biochemistry, A student Companion by B. S. Rao and V. Deshpande, I.K. International Publishing House Pvt. Ltd, 2005. Qualitative testing for carbohydrates by J. O. Schreck and W. M. Loffredo, Chemical Education Resources, Inc., 1994.
5	Qualitative analysis of amino acids	To confirm the presence of amino acids based upon the presence of functional group.	Practical manual of Biochemistry by S.P. Singh, 5 th edition, 2011
6	Qualitative analysis of lipids (unsaturated oils, glycerol and cholesterol)	To study the physical properties of lipids as solubility, emulsification and other chemical characteristics such as acidic nature.	 Experimental Biochemistry, A student Companion by B. S. Rao and V. Deshpande, I.K. International Publishing House Pvt. Ltd, 2005.
7	Qualitative analysis of proteins using different tests	To understand the biochemical properties of proteins.	www.biologydiscussion.com
8	Quantitative estimation of proteins using Biuret/ Lowry method/ Bradford method	To understand the method of quantification of proteins in mg/µg.	• Hawk's physiological chemistry by B. L. Oser, 14th edition, McGraw- Hill Book Company.,New York, N. Y., 1996.
			 Review of Physiological Chemistry by H.A. Harper, V.W. Rodwell, P.A. Mayes, Harold Anthony, 17th edition, Lange Medical Publications, Los Altos California, 1979.
9	Estimation of reducing sugar by DNSA method	To understand the method of quantification of sugars in mg/µg.	Use of dinitrosalicylic acid reagent for determination of reducing sugar, G.L. Miller, , <i>Anal. Chem.</i> , 31, 426, 1959.

Г

10	Isolation of starch and casein	To understand the methods for isolation of biomolecules and their quantification	Hawk's physiological chemistry by B. L. Oser, 14th edition, McGraw-Hill Book Company.,New York, N. Y., 1996.
11	Acid value of oil / saponification value	To understand the quality of and nutritional value of lipids.	An Introduction To Practical Biochemistry by D. T. Plummer, 3 rd edition, Tata McGRAW-HILL Edition, 1998.

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

DY PUC

COURSE: CELL BIOLOGY COURSE CODE: BT 202 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic concepts of cell Biology. This is essential for taking further courses in Biotechnology during the next couple of years.

COURSE OUTCOME:

At the end of the course, students will have the ability to:

- Outline the structure and functions of prokaryotic and eukaryotic cells and cellular components
- Observe and correctly identify different cell types, cellular structures using different microscopic techniques
- Understand the cellular components and processes underlying cell cycle, cell division and apoptosis
- Demonstrate the significance of cell receptors and cell signaling in biological system

PREREQUISITES

This is an introductory course. There are no prerequisites for the course.

Sr. No.	Торіс	Description	Hrs
1.	Introduction	Pre-cellular evolution: artificial evolution of cells, RNA world hypothesis, Postulates of cell theory, Endosymbiotic theory, Broad classification of cell types, Comparative study on Prokaryotic cell and Eukaryotic Cell (Animal and Plant Cell)	3
2.	Methods to study cell structure and function and model organisms used in cell biology	Light Microscopy, Electron Microscopy, Fluorescence Microscopy, Confocal Microscopy, Deconvolution Microscopy, Flow cytometry and Cell sorting, Subcellular Fractionation, Introduction to animal cell, plant cell and virus culture, Immunocytochemistry and immunohistochemistry. Model organisms: <i>E. coli, S. cerevisiae, D. discoideum,</i> Hydra. <i>C elegans, D. melanogaster,</i> Zebrafish, <i>A. thaliana,</i> etc. Emerging Model Organisms.	6
3.	Cell surface	Cell wall and extracellular matrix. Cell membrane: Structure and functions, Membrane proteins, lipids and sugar modifications for different membrane types. Ion channels. Transport across the membrane, Exo and Endocytosis Cell to cell interaction.	6
4.	Structure and function of cell organelles along with difference in membrane	Cytosol, Golgi bodies, ER (smooth and rough), Ribosomes, Cytoskeleton structures (Actin and cell movements, Microtubules and cell division, cytoskeleton dynamics and treadmilling), Nucleus (Structure of nuclear	10

COURSE DESCRIPTION

).	developmental biology	induction, Types and importance of stem cells, Cell differentiation, Causes of abnormal cell division and	т
9.	Basic Concepts in	Cell lineage and cell-cell interaction, Embryonic	4
8.	Programmed cell death and Cellular senescence	Apoptosis (intrinsic and extrinsic pathways), Necrosis, Necroptosis, Autophagy (macroautophagy and microautophagy), Cellular senescence, Methods to study cell death.	4
7.	Cell receptors and signal transduction	Signaling molecules and their receptors. Function of surface and intracellular receptors, Different pathways of signal transduction, Signaling in development and differentiation.	4
6.	Protein transport	Transportation of proteins into the nucleus and mitochondria, Vesicular transportation.	3
5.	Cell division (prokaryotic and eukaryotic) and cell cycle	Fission and fusion, budding. Eukaryotic Cell cycle stages (mitosis and meiosis), Nuclear organization during mitosis, Events of M phase, Regulators of cell cycle, Fertilization, Cell proliferation during development.	5
		envelop, internal organization, nucleolus), Mitochondria (Structure, respiratory chain complexes, ETC, ATP synthase structure, Mitochondrial biogenesis, maternal inheritance, anterograde and retrograde signaling), Chloroplasts, Lysosomes, Peroxisome. Different diseases in relation to cell organelles.	

METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1. Molecular Biology of the Cell; B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter; 6th Edition, Garland Sciences, 2015.
- 2. Molecular Cell Biology; H. Lodish, A. Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher, Hidde Ploegh, Angelika Amon, Kelsey C. Martin; 8th Edition; 2016
- 3. The Cell: A Molecular Approach; Geoffrey M. Cooper, Robert E. Hausman; 7th Edition ; Sinauer Associates, Inc., 2015.

PRACTICAL IN CELL BIOLOGY (2 Hrs. PER WEEK)

MARKS 50

Sr. No	Name of Experiment	Learning objective	References
1.	Introduction to the instruments used in cell biology (Microscope, Biosafety Cabinets, Incubators, Centrifuges, Pipettes)	To get acquainted with the instruments and SOP for the various instruments. This Exercise focuses on how to develop a working knowledge of the microscopes and their uses. Students should identify the different parts of the Microscope and safe handling.	Fundamentals of Light microscopy And electronic Imaging by D. B. Murphy, John Wiley & Sons, Inc., Publication. 2001
2.	Study of different cell types under microscope	Students should be able to differentiate between prokaryote, eukaryote cells Should be able to differentiate between plant and animal cells Should be able to differentiate between cells from different tissues	
3.	Slide preparation and staining (plant)	Cross-sectioning of monocot and dicot plant root, stem and leaf Staining and slide preparation Identification of different anatomical features Preparation of permanent slide	A Text-Book of Histology Descriptive and Practical. For the Use of Students by A. Clarkson, 2 nd edition, Science Direct, 2013. Methods in plant histology by C.Joseph, 3 rd edition, The university of chicago press Chicago, Illinois, The Baker & Taylor Company, 2007
4.	Blood Smear Preparation and differential staining.	A classical method for identification of blood cell preparation.	Dacie and Lewis Practical Haematology by B. Bain, I. Bates, M. Laffan, 11 th edition, Elsevier, 2016.
5.	Buccal smear – Identification of Barr Body	A quick cytological method for identification of sex in mammals- an extreme case of chromosomal condensation.	Cytological Assessment of Barr Bodies Using Aceto-Orcein and Papanicolaou Stains in Buccal Mucosal Smears and Their Sex Estimation Efficacy in an Indian Sample, D. U. Angadi P. V. Hallikerimath and S. Kale, <i>Acta</i> <i>Cytologica</i> , 57:516-521, 2013 (DOI:10.1159/000353216)

6.	Mitosis in Onion	To study mitosis using Onion root	Science Volume 61 of Methods
	Root-Tip Cells	tip cells.	in cell biology by Conly L.
			Rieder. Academic Press, 1999.
7.	Meiotic cell division	To perform Meiotic cell division in	
	in grasshopper	the given sample	
	testis/Hibiscus		
	flower buds		

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

COURSE: Maths II: STATISTICS COURSE CODE: BS 201 MARKS: 100

L T P Hr C 2 0 2 4 3

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics & statistics.

COURSE OUTCOME

At the end of this course, students will be able to:

- Recognize the significance of data collection and its role in determining scope of inference
- Apply and interpret results of the principal methods of statistical inference and design
- Demonstrate an understanding of hypothesis testing, by applying appropriate statistical methods for variable analysis.
- Use statistical software appropriately.
- Communicate the results of statistical analyses effectively

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

COURSE DESCRIPTION

Sr. No.	Topics	Description	Lectures
1	Determinant & Matrices :	Determinant: Definition & expansion of determinant of order 2 and 3, Cramer's rule Matrices: Definition of Matrix of order mxn and types of Matrices, Algebra of Matrices, Transpose of a Matrix, Inverse of a Matrix by adjoin method, Solution of simultaneous equations	06
2	Complex Number :	Definition of Complex number, Cartesian, polar, exponential forms of complex number. Algebra of Complex Number De - Moiyre"s theorem (without proof) and simple problems.	03
3	Numerical Methods :	Numerical Solution of Simultaneous Equations : Gauss elimination method Iterative Methods Gauss Seidal and Jacobi"s Method	03
4	Set Theory and Probability	Set Theory Probability: Definition of random experiments, sample space, events, occurrence of event and types of events, Definition of probability, addition and multiplication theorem of probability. Probability Distribution: Binominal Distribution, Poisson''s Distribution, Normal Distribution	06
5	Statistics	Frequency Distribution Measures of Control tendency (For Raw, Ungroup & group Data)	01 03 02
6	Correlation & Regression	Measures of Dispersion: Rauge, Variance, Coefficient of Cariance, Standard Derivation Correlation & Regression	02

SYLLABUS FOR B. TECH. BIOTECHNOLOGY			Dr. D.Y. PATIL VIDYAPEETH, PU
7	Hypothesis Testing	ANNOVA, Chi square Test	03
8	F-Test	F-Test	01
Total Number of Lectures			

METHODOLOGY

The course will be covered through lectures supported by practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- Fundamentals of Statistic by S. G. Gupta. 17th edition, Himalaya Publications 2000.
 Statistical Method in Biology by Bailey 3rd edition, University of Cambridge Press, 1995.
 Statistics from biologist by R.C. Campbell, 3rd edition, Cambridge University Press, 1989.
- 4. Fundamentals of Mathematical Statistics by S. C. Gupta and S. C. Kapoor, Hand publication, New Delhi .1987.

PRACTICAL IN Maths II: STATISTICS

Two Hours Per Week

Sr. No.	Name of experiment	Learning objectives
1.	Introduction to statistical computing.	Understand concepts and ideas behind mathematical and statistical computing.
2.	Exploring statistical packages such as SYSTAT/ SPSS/ SAS.	Explore statistical package environment: features, workspace, menu, and user interface.
3.	Biological data handling in statistical package.	Recognize the difference between biological and other data.
4.	Data exploration with graphs.	Draw various types of graphs.
5.	Computation of measures of central tendency.	Learn how to compute and interpret various measures of central tendency.
6.	Computation of measures of dispersion.	Learn how to compute and interpret various measures of dispersion.
7.	Computation of correlation coefficient.	Learn how to compute and interpret correlation coefficient.
8.	Curve fitting, construction of regression models and computation of regression coefficient.	Understand data modeling and learn to visualize and measure relationship between variables by constructing various models.
9.	Analysis of variance (ANOVA).	Understand and perform ANOVA test.

References:

- 1. Fundamental of Statistics by S.C. Gupta, 17th edition, Himalaya Publications, 2000 .
- 2. Fundamentals of Mathematical Statistics by S.C. Gupta and Kapoor, S. Chand Publications, 1987.
- Fundamental of Biostatistics by B. Rosner, 7th edition, Cengage Learning Publisher, 2010.
- 4. Biostatistics: Bare essentials by G. R. Norman and D. L. Streiner, McGraw-Hill Medical Publisher, 2014.
- 5. Statistical methods in Bioinformatics by W. J. Ewens and G. R. Grant, 2nd edition, Springer, 2005.
- 6. The Practice of Business Statistics (w/CD) by Manish Sharma and Amit Gupta, Khanna Publishing House, 2010

Marks

PRACTICAL EVALUATION SCHEME Examination

Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

NAME OF THE COURSE: ENGINEERING MECHANICS

COURSE CODE: BT 203 MARKS: 100

L	Т	Р	Hr	С
2	0	2	4	3

OBJECTIVES:

The objective of the course is to familiarize the students with the basic concepts of engineering mechanics.

COURSE OUTCOME:

By the end of the course, students will:

- Understand the basic concepts of engineering mechanics
- Know, the principles of static equilibrium
- Demonstrate the ability to illustrate the laws and kinematics of motion and their interrelationships
- Be able to identify the major factors involved in the angular kinematics of human movement.
- Identify and analyze various biomechanical problems.

PREREQUISITES:

Since the course is technical in nature the students must have the basic knowledge of Math and Physics.

Description Sr. Topic Hrs. No 3 **Basics of Mechanics** Introduction. Units and Dimensions, Laws of 1 Mechanics, Vectors - Victorian representation of forces and moments, Vector operations 2 Statics of particles 6 Principal of statics, force systems, Principle of transmissibility, Resolution and Composition of forces , Resultant of concurrent forces, Moment of a force, Resultant of parallel force system, Couple 3 Free body diagram Free body diagram, Types of supports and their 7 reactions, Requirements of stable equilibrium, Equilibrium of a particle, Equilibrium of a particle in space, Equilibrium of rigid bodies in two dimensions, Equilibrium of rigid bodies in three dimensions, Types of beams-Simple and compound beams 4 Friction Frictional Force, Laws of Coulomb friction, Simple 3 Contact friction 5 **Dynamics** Basics of Kinetics and kinematics. Relative motion. 6 Newton's Law of Motion, Conservation of energy and kinematics Work Energy Equation of particles. Impulse and Momentum, Impact of elastic bodies, Direct central impact and coefficient of restitution Basics of 5 6 Basic concept of Biomechanics, Biomechanics of **Biomechanics** tissues, muscles, bones and ligaments, Applications

Total Number of Lectures

COURSE DESCRIPTION:

30

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Engineering Mechanics by Sanju Unadkat, Seventh edition, Tech-Max publications, 2012.
- 2. Engineering Mechanics by H.J. Sawant ,sixth Edition, Technical Publication ,2012.
- 3. Engineering Mechanics by DS Bedi, MP Poonia, Khanna Publications, New Delhi, 2018.

PRACTICALS IN ENGINEERING MECHANICS

(2 Hrs. Per Week)

50 Marks

Sr. No.	Name of the experiment	Learning objective	Literature / Web links for reference and videos
1	Study of different force systems.	Students should able to learn different types of force systems and their visual representation.	• Engineering Mechanics by S. Unadkat, 7 th edition, Tech-Max publications, 2012.
2	Study of Laws of coplanar forces a) Triangle law b) Parallelogram law c) Polygon law	Students should able to learn and prove 3 different laws for coplanar forces.	• Engineering Mechanics by H.J. Sawant, 6 th edition, Technical Publication, 2012.
3	Study of equilibrium of forces in space.	Students should able to understand the concept of equilibrium, requirements for stable equilibrium.	
4	Study of collision of elastic bodies.	Students should able to learn law of conservation of momentum and concept of Impact.	
5	Analysis of compound beam	Students should able to identify different supports and their reactions. They should able to draw FBD of simple and compound beams.	
6	Study of flywheel	Students should able to learn basic concepts of dynamics, Moment of inertia.	
7	Study of friction	Students should able to learn basic concept of friction, its types.	
8	To find coefficient of restitution.	Students should able to find coefficient of restitution for different materials.	https://physics.stackexcha nge.com/questions/17212 7/the-coefficient-of- restitution-of-a-bouncing- ball

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

Dr. D.Y. PATILI VIDYAPEETH, PUNE

COURSE NAME: ENVIRONMENTAL SCIENCE COURSE CODE: BS 202 MARKS: 100

L T P Hr Cr 2 0 2 4 3

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the problems related to environmental pollution, loss of natural resources, climate change, solid waste disposal, biodiversity and social issues due to environmental degradation. It is also important for them to develop clear understanding of biodiversity and its conservation.

COURSE OUTCOME:

On successful completion of the course students will be able to:

- Demonstrate basic understanding of natural resources, ecosystem and its structural and functional aspects
- Understand and appreciate values of biodiversity and significance of its conservation
- Demonstrate the measures to prevent environmental pollution at different levels
- Acquire understanding on effect of global warming and population growth on human health and climate change.
- Think critically on environmental issues and come up with sustainable solutions

PREREQUISITES

Since the course is very basic in nature there are no prerequisites.

Sr. No	Торіс	Description	Hrs
1	Natural Resources and associated problems	Land, water, food, forest, mineral and energy resources, their use, over-exploitation and conservation.	3
2	Ecosystems	Concept, structure and function of ecosystem. Producers, Consumers and decomposers Energy flow in ecosystem. Ecological succession and pyramids, Food chains, food webs and ecological pyramids. Characteristic features of Forest, Grassland, Desert and Aquatic Ecosystems.	4
3	Environmental Pollution	Definition, Causes, Effects and control measures of Air, Water, Soil, Noise, thermal and Marine Pollution. Nuclear hazards and Solid waste management. Role of an individual in prevention of Pollution and Pollution case studies	6
4	Biodiversity and its Conservation	Genetic, species and ecosystem diversity. Value of Biodiversity: social, ethical, aesthetic and option values. India as a mega diversity nation. Hotspots of Biodiversity. Threats to Biodiversity: Habitat loss, poaching of wildlife, man wild life conflicts. Endangered and Endemic species of India. Conservation of Biodiversity: in situ and ex situ conservation of biodiversity. Biodiversity act 2002	4 2
5	Social Issues and the Environment	Urban problems related to energy. Water conservation, Rain water harvesting, and watershed management. Resettlement and	4

COURSE DESCRIPTION

Total number of lectures 3					
Study of simple ecosystems- pond, river, hill slopes, etc					
		Study of Common plants, insects, birds.			
		Visit to local polluted site- Urban/Rural/Industrial/Agricultural			
		River/forest/grassland/hill/mountain			
7	Field work	Visit to a local area to document environmental assets	4		
		and Technology in environment & human health.			
		HIV/ AIDS and Women and Child welfare. Role of Information			
	and Environment	programs. Environment and Human Health. Human Rights.			
6	Human Population	Population growth. Population explosion- family welfare	3		
		possible solutions. Public awareness			
		environmental legislation. Environmental ethics: Issues and			
		Act. Forest Conservation Act. Issues involved in enforcement of			
		(Prevention and control of Pollution) Act. Wildlife protection			
		Acts: Air (Prevention and control of Pollution) Act. Water			
		Wasteland reclamation: Case studies. Environment protection			
		rain, ozone layer depletion, nuclear accidents and holocaust,			
		rehabilitation of people. Climate change, global warming, acid			

METHODOLOGY

The course would be taught through lectures, demonstrations and field work. The students will undertake field trip to sensitive hot spots in Western Ghats to observe and collect samples of Flora and Fauna for on the spot studies, collection and identification of specimens. These would be evaluated on the basis of report presented by the students

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1. Environmental Biology, K. Agarwal, Nidi Publ. Ltd. Bikaner, 2001.
- 2. The Biodiversity of India, B. Erach, Mapin Publishing Pvt. Ltd., 2002.
- 3. Hazardous Waste Incineration, R.C. Brunner, McGraw Hill Inc., 1989.
- 4. Marine Pollution, R.S. Cark, 5th edition, Clanderson press Oxford (TB), 2001.
- 5. A Textbook of Environmental Science by Rimpi Mehani Ne'e Chopra, Jyotsna, Khanna Publishers, New Delhi, 2017.
- 6. Environmental Studies by MP Poonia and SC Sharma, Khanna Publishers, New Delhi, 2017.
- 7. Elements of Environmental Polluton Control by O. P. Gupta, Khanna Publishers, New Delhi, 2016.

PRACTICAL IN ENVIRONMENTAL SCIENCE

(2 Hrs. Per Week) MARKS 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	To study physicochemical properties of soil (pH, conductivity, moisture content, carbonate content, salinity, porosity)	To know about variations of soil properties and to determine their suitability for a particular purpose	 Soil Analysis by P. C. Bandyopadhyay Gene-Tech books, New Delhi, India. 2007. Handbook of Water Analysis by M. L. Leo, S. P. Nollet, S. P. Leen, De Gelder., 3rd edition,
2.	Identification and enumeration of zooplanktons and phytoplanktons as indicator of water pollution	To differentiate polluted and non-polluted sites based on plankton data	 CRC Press, United Kingdom, Publisher: <u>Leen S. P. De</u> <u>Gelder</u>, 2013. A Microbiology laboratory Manual by J. G. Cappuccino
3.	To identify and characterize normal microflora in air, water and soil	To know presence of normal microflora within environment.	 and N. Sherman, 10th edition, Dorling Kindersley, Pearson Benjamin Cummings, 2014. Principles and Practices of air
4.	Determination of MPN from water samples	Determine potability of water	pollution analysis by J. R. Mudakavi, I K International
5.	Estimation of chlorine in drinking water using colorimetric method	Understanding of residual amount of chlorine in water as a health hazard	Publishing House Pvt. Ltd., New Delhi, India, 2010.
6.	Estimation of relative humidity of the atmosphere	To understand relationship between weather and humidity	
7.	Estimation of dissolved oxygen in the given water sample	To understand importance of BOD and COD	
8.	Study the effects of pollutants (e.g., heavy metals) on flora	To understand effect about pollution	
9.	Determination of NO ₂ from the atmosphere by Colorimetric method using high volume sampler (Optional)	To understand more about atmospheric condition	
10.	Determination of K ₂ O value of soil by flame photometer (Optional)	To understand about Quality of soil	
Exami	ination	Marks	

Examination

Marks

Total:	50
End semester examination:	30
Practical Internal (Continuous) assessment:	20

COURSE: ENGINEERING GRAPHICS COURSE CODE: - BT 102

L T P Hr C

1 0 2 3 2

MARKS: 100

OBJECTIVE OF THE COURSE:

Objective of the course are: To Learn basic engineering drawing formats. Learn to take data and transform it into graphics drawings. Learn to sketch and take field dimensions.

COURSE OUTCOME

The students will have the ability to

- Understand the basic engineering drawing formats
- Collect data and transform it into graphics drawings
- Demonstrate the sketching techniques and take field dimensions

PREREQUISITES

Since the course is very basic in nature, knowledge of mathematics is required.

Sr. No.	Торіс	Description	Hrs
1.	Drafting Technology and Introduction to Any Drafting Software/Pack age	ing linear, angular, aligned system, unidirectional system, parallel dimensioning, chain dimensioning, location dimension and size dimension. Tolerances – methods of representing tolerances, unilateral and bilateral tolerances.	
2.	Curves used in Engineering Practice	Ellipse, Parabola, Hyperbola, normal and tangents to these curves, Involute, Cycloid, Epi-cycloid, Hypo-cycloid, Archimedean Spiral, Helix on cone and cylinder.	7
3.	Orthographic Projections	Reference planes, types of orthographic projections – First angle projections, Third angle projections, methods of obtaining orthographic view s by First angle method, Sectional orthographic projections – full section, half section, offset section.	2
4	Auxiliary Projections	Auxiliary planes – Auxiliary Vertical Plane (AVP), Auxiliary Inclined Plane (AIP), symmetrical auxiliary view, unilateral auxiliary view, bilateral auxiliary view.	2

COURSE DESCRIPTION

Total number of Lectures			18
6.	Interpretation of Given Views/Missing Views	Identification of lines/edges and surfaces, visualization of given orthographic views, adding a missing/third view, adding a sectional view, to convert a given view in to a sectional view.	2
5. Isometric Isometric view, Isometric scale to draw Isometric projection Projections Non-Isometric lines, and construction of Isometric view from given orthographic views and to construct Isometric view of a Pyramid, Cone, and Sphere.			3

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

1. Elementary Engineering Drawing, by D. Bhatt, 53rd edition, Chartor Publishing house, 2014.

2. Engineering Drawing by P.S. Gill, S.K. KAtaria & sons, 2009.

3. Engineering Graphics and Drafting by P.S. Gill, S.K. KAtaria & sons, 2009.

4. Machine Drawing by N.D. Bhatt, 50th Edition, Chartor Publishing house, 2014.

PRACTICAL IN ENGINEERING GRAPHICS (2 Hrs. PER WEEK) MARKS 50

Five A2 (594X420mm) (Half imperial) size drawing sheet as detailed below:

- 1. Sheet No. 1: CURVES
 - To draw any four curves mentioned in the detailed syllabus.
- 2. Sheet No. 2: ORTHOGRAPHIC VIEWS
 - \circ To draw two principal views, one sectional view for two objects.
- 3. Sheet No. 3: AUXILIARY VIEWS
 - To draw auxiliary views from the given views for any two objects.
- 4. Sheet No. 4: ISOMETRIC VIEWS
 - Two problems on Isometric views.
 - (minimum one problem by using CAD software/package)
- 5. Sheet No. 5: INTERPRETATION OF GIVEN VIEWS/MISSING VIEWS
 - Two problems on Interpretation of given views.
 - (minimum one problem by using CAD software/package)

EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

COURSE: DISASTER MANAGEMENT COURSE CODE: HU-102 MARKS: 50

L T P Hr C 0 1 0 1 -

LEARNING OBJECTIVE:

- To provide student an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional process in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

COURSE OUTCOME:

By the end of course, students will be able to:

- Understand about disasters, their types and significance
- Demonstrate the relationship between vulnerability, disasters, disaster prevention and risk reduction
- Acquire preliminary understanding of approaches of Disaster Risk Reduction
- Demonstrate rudimentary ability to respond to their surroundings with potential disaster response and will have due sensitivity

Sr.			No. of
No.	Topics	Detail syllabus	Lectures
1	Introduction to Disasters	Concepts and definitions (Disaster, Hazard, Vulnerability,	04
		Resilience, Risks)	
2	Disasters: Clarification,	Differential impacts – in terms of caste, class, gender, age,	08
	Causes, Impacts	location, disability,	
	(Including social,	Global trends in disasters urban disasters, pandemics,	
	economic, political,	complex emergencies, Climate Change	
	environmental, health,		
	psychosocial, etc.)		
3	Approaches to Disasters	Phases, Culture of safety, prevention, mitigation and	08
	Risk reduction	preparedness, community based DRR, Structural –	
		nonstructural measures, roles and responsibilities of	
		community, Panchayati Raj Institution / Urban Local	
		Bodies (PRIs/ULBs), states, centre and other Satke-holders	
4	Inter-relationship	Factor affecting Vulnerabilities, differential impacts,	04
	between Disasters and	impact of Development project such as dams,	
	Development	embankments, changes in Land-ude etc. Climate Change	
		Adaptation. Relevance of indigenous knowledge,	
		appropriate technology and local resources	
5	Disaster Risk in India	Hazard and Vulnerability profile of India	06
		Components of Disaster Relief : Water, Food, Sanitation,	
		Shelter, Health, Waste Management,	
		Institutional Arrangements (Mitigation, Response and	

COURSE DESCRIPTION :

		Preparedness, DM Act and Policy, Other related policies,	(NIVERSITY)
		Plans, programmes and legislation)	
6	Project Work	Field Work, Case Studies	06
		Total Number of Lectures	36

METHODOLOGY

The course will be covered through lectures, project work & classroom discussion.

EVALUATION SCHEME (THEORY)

This course attendance is mandatory but university examination may not be conducted.

BOOKS RECOMMENDED:

- 1. Introduction in "Confronting Catastrophe' by A. David Oxford University Press, 2000.
- 2. Vulnerability in Disaster Discourse, by Andharia J. JTCDM, Tata Institute of Social Science working Paper no. 8, 2008
- 3. At Risk Natural Hazards, Peoples, Vulnerability and Disasters by Blaikie, P, Cannon T, Davis I, Wisner B, Rutledge. 1997
- 4. Introduction to International Disaster Management, C. P. Damon, 2007,
- 5. Disaster Management : A Disaster Manager's Handbook, Carter and Nick, Asian Development Bank, Manila Philippines, 1991.
- 6. Development and Disasters, Cuny, F., Oxford University Press, 1983.
- 7. Document on World Summit on Sustainable Development 2012
- 8. Govt. of India : Disasters Management Act 2005. Government of India, New Delhi
- 9. Government of India, National Disasters Management Policy, 2009.
- 10. Environmental Knowledge for Disasters Risk Management, A. K. Gupta, S. S. Nair, NIDM, New Delhi, 2011.

SEMESTER III							
Course Code	Course Name	L	Т	Р	Hr	Cr	
BT 301	Analytical Techniques	3	0	4	7	5	
BT 302	Microbiology & Virology	3	0	4	7	5	
BT 303	Genetics	3	0	2	5	4	
BI 301	Concepts in Bioinformatics	2	0	4	6	4	
BT 304	Biosafety, Bioethics & IPR	2	0	0	2	2	
HU 301	Universal Human Values II	2	1	0	3	3	
	Total 15 1 14 30 23						

COURSE: ANALYTICAL TECHNIQUES COURSE CODE: BT-301 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to create general understanding of centrifugation, chromatographic techniques, various spectroscopic techniques like absorption spectroscopy, fluorescence spectroscopy, Infra-red spectroscopy, Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD) spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Electrophoretic techniques, and X-ray crystallography. They would also understand the importance of analytical tools in biotechnology & its applications in various industries.

COURSE OUTCOME:

Upon completion of this course, students will be able to:

- Understand the basic concepts and principles of the major analytical techniques including instrumentation, sample preparation and standardization.
- Evaluate the proper application of various analytical techniques for problem solving in biological sciences.
- Demonstrate the ability to plan and execute experiments, and analyze and interpret the outcomes.
- Design an analytical regimen to obtain data relevant to their research problem

PREREQUISITES:

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr. no.	Торіс	Description	Hrs
1.	Centrifugation	Introduction: Basic Principle of Sedimentation Types of centrifuges: Desktop, High Speed and Ultracentrifuge (Preparatory and Analytical), Design and their working principle Types of Rotors, Wall-effect	4
2.	Spectroscopy : (i) Absorption Spectroscopy (ii) Fluorescence Spectroscopy	Simple theory of absorption of light by molecules, Chromophore and terminologies associated with absorption of molecules The Beer-Lambert Law and its deviations Single and double beam spectrophotometers for measuring Visible and Ultraviolet light: Instrumentation and Parameters measured in absorption Spectroscopy Factors affecting the absorption properties of a chromophore Empirical rule for the absorption spectra of biological macromolecules Chemical Analysis by absorption spectroscopy using Visible and Ultraviolet light Structural studies of Proteins using absorption of Ultraviolet light Structural studies of DNA using absorption of Ultraviolet light Simple theory of Fluorescence Instrumentation and Technology of Fluorescence Spectroscopy Intrinsic Fluorescence measurements for information about the	4
		Ultraviolet light Structural studies of Proteins using absorption of Ultraviolet light Structural studies of DNA using absorption of Ultraviolet light Simple theory of Fluorescence Instrumentation and Technology of Fluorescence Spectroscopy	

COURSE DESCRIPTION

		Dr. D.Y. PATIL VIDYAPEETH, PU	NE
	(iii) Infrared Spectroscopy	Infrared Spectroscopy: Basic Principle Instrumentation and Technology of Infrared Spectroscopy Information in Infrared Spectra and Applications of Infrared spectroscopy	2
	(iv) Optical Rotatory	Theory of Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD) Relative values of ORD and CD measurements, Advantages of CD	
	Dispersion (ORD) & Circular	over ORD Instrumentation for measuring ORD and CD	2
	Dichroism (CD)	Applications of ORD and CD Nuclear Magnetic Resonance (NMR) Spectroscopy : Principle Basic Instrumentation of NMR Spectrometer	2
	(v) Nuclear Magnetic Resonance	Applications of NMR Spectroscopy	
	(NMR) Spectroscopy	Mass spectrometry: Basic Principle Instrumentation and main components of mass spectrometers	
	(vi) Mass spectrometry	Ionization source, Mass analyzers, and Detectors 4. Applications of Mass Spectrometry	2
3.	Chromatography	Partition Chromatography: Simple Theory, Concept of theoretical plates	10
		Adsorption Chromatography: Simple Theory & Types Operations of columns : Terminologies and concept Elution : Types of elution methods	
		Supports : Concept of mesh size and mesh screen Paper Chromatography : Principle, Experimental Procedure, $R_{\rm f}$ value calculation, Ascending and Descending paper	
		chromatography, 2-D paper chromatography Thin Layer Chromatography: : Principle, Experimental Procedure, <i>R</i> _f value calculation, Advantages of Thin layer chromatography	
		over paper and column chromatography Gas-Liquid Chromatography: Principle, Basic set up of Gas-liquid chromatography system, Detectors and Uses of Gas-Liquid chromatography	
		Gel Chromatography (molecular-sieve chromatography): Simple Theory, Materials (dextran, agarose and polyacrylamide gels), Advantages of gel chromatography, Estimation of molecular	
		weight and applications of gel chromatography Ion-Exchange Chromatography: Principle, Properties of Ion Exchangers, Choice of Ion Exchangers, Technique and application	
		of Ion Exchange chromatography. High-Performance of Liquid Chromatography (HPLC): Principle, Application of pressure in HPLC, Advantages and uses of HPLC.	
		Affinity Chromatography: Principle, Methods of Ligand immobilization (Cyanogen-bromide-activated agarose, Aminoethyl- and hydrazide-activated polyacrylamide), uses of	
		affinity chromatography	

		Dr. D.Y. PATIL VIDYAPEETH, I IMMUNUSAURANI	PUNE
		Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-	
		PAGE), Principle of separation, Techniques and molecular weight	
		estimation via SDS-PAGE	
		Iso-electric focusing (IEF): Principle, Technique and application	
		2-D PAGE: Steps involved in 2-D PAGE, application in	
		proteomics	
		Pulse-field gel electrophoresis: Principle, Technique and	
		Application	
		Capillary electrophoresis: Principle, Technique and Application	
5.	X-ray	Interaction of X-ray with matter: Absorption, Scattering and	2
	crystallography	diffraction (Bragg' s Law)	
	5 6 1 5	Preparation of crystals : Hanging and sitting drop vapor diffusion	
		methods	
		X-ray diffraction methods	
		Application of X-ray Diffraction in Crystal structure	
6.	Techniques for	Surface Plasmon Resonance (SPR) Spectroscopy : Principle,	2
	Intermolecular	Technique & Application	
	Interactions	Isothermal Titration Calorimetry (ITC) : Principle, Technique &	
		Application	
		Total Number of Lectures	38

METHODOLOGY:

The course will be covered through lectures supported by Practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Physical Biochemistry, Applications to Biochemistry and Molecular Biology, D. Freifelder, 2nd edition, W.H. Freeman and Company, New York, 1992.
- 2. Biophysical Chemistry Principles and Techniques by A. Upadhyay, K. Upadhyay & N. Nath, 4th edition, Himalayan Publishing House. 2005.
- 3. Instrumental Methods of Chemical Analysis, G. R. Chatwal and A. K. Sham, 5th edition Himalaya Publishing House, 2005.
- 4. Instrumental Analysis, D. A. Skoog, F. J. Holler, S. R. Crouch, 11th edition, Brooks/Cole, a part of Cengage Learning, 2012.

PRACTICAL IN ANALYTICAL TECHNIQUES (4 Hrs. Per Week) MARKS : 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
1	Lab orientation, acquaintance with infrastructure and instruments.	Developing competence and encourage hands on usage and maintenance of facilities and equipment's. SOPs and safety practices.	1. Physical Biochemistry, Applications to Biochemistry
2.	Preparation of various common buffers such as Phosphate buffer saline (PBS), Tris buffer saline (TBS), Tris acetate buffer	To understand the preparation of various common buffers and its use in biological system, To understand the concept of molarity, normality etc., Measurement of pH, To understand, why a particular buffer is preferred for a particular range of pH	and Molecular Biology, D. Freifelder, 2 nd edition, W.H. Freeman and Company, New York, 1992.
3.	To study and understand the process of dialysis	Knowhow of preparation and usage of dialysis bag. Application of dialysis process, molecular weight cut off and desalting of proteins. REFER:	2. An introduction to practical Biochemistry, 3 rd edition by D. T.
4.	Separation of various amino acids using paper chromatography and calculation of retention factor (R _f) value	To understand the principle of partition chromatography, technique of paper chromatography and calculation of R_f value of given unknown amino acids using the standard amino acids.	 Plummer, Tata McGraw-Hill, 2004. 3. Laboratory manual in Biochemistry by J. Jayaraman,
5.	Separation of various amino acids using Thin Layer chromatography (TLC) and calculation of Retention factor (R _f) value	To understand the principle of partition chromatography, techniques of thin layer chromatography and calculation of R_f value of given unknown amino acids using the standard amino acids.	New Age International (P) Limited, Publishers, 2011. 4. Introductory Practical Biochemistry by S.K. Sawhney
6.	To study the elution profile of given proteins (e.g. BSA, ovalbumin, lysozyme) on Sephadex G-50 / G- 100 column	 To know the preparation of the matrix, column packing, calculation of the bed volume, void volume and flow rate etc. To determine the elution profile of given protein by taking absorbance at 280 nm and to understand the principle of molecular- sieving. Various application, desalting, protein separation etc. 	and R. Singh, 2 nd edition, Narosa Publishing House, 1999. 5. Calbiochem buffer booklet
7.	To study and determine the functioning of high performance liquid chromatography (HPLC)	 To understand the principle of HPLC and functioning of the various parts of HPLC system. To study the elution profile of the BSA using gel filtration column (on TSK-GEL gel filtration column from Tosoh Bioscience) 	
8	Estimation of protein by various methods such as Lowry's and Bradford.	To understand the principle of method, preparation of calibration curve with standard protein and calculation of concentration of unknown protein sample.	

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
9.	To find out the concentration of given bovine serum albumin (BSA) solution in mg/ml.	 What is percent extinction coefficient? What is the percent extinction coefficient of BSA and standard proteins? How will you calculate the concentration of given protein solution using percent extinction coefficient in mg/ml? 	
10.	To estimate the molecular weight of given protein using Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE)	 1.To study the principle and technique of SDS- PAGE for the separation of proteins 2. To check the purity of the protein using SDS- PAGE 3. Preparation of the standard curve (using standard protein provided) for estimation molecular weight of protein. 	
11.	Centrifugation: Cell pelleting, sub- cellular fractionation of cell extract, handling of various type of centrifuges.	 To understand the basics of centrifugation. Demonstration of various type rotors, their function and use. Demonstration of functioning of various types of centrifuges. 	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: MICROBIOLOGY AND VIROLOGY

COURSE CODE: BT 302 MARKS: 200

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with microorganisms and viruses, their structures, diseases caused by bacteria and viruses and their control.

COURSE OUTCOME:

By the end of the course, students will have sufficient scientific understanding and will be able to:

- Understand the basic microbial & viral structure and function and comparative characteristics of prokaryotes and eukaryotes.
- Demonstrate the processes in microorganisms and viruses for their replication, survival, and interaction with their environment, hosts, and host populations
- Know how viruses can be used as tools to study biological processes, as cloning vectors and for gene transfer.
- Demonstrate practical skills in the use of technologies, tools, and approaches common to microbiology & virology

PREREQUISITES:

Since the course is very basic in nature, school level knowledge in biology is sufficient to take the course and there are no prerequisites.

Sr. No	Торіс	Description	Hrs
1	Introduction to	Scope and history of Microbiology.	7
	Microbiology	Characterization, classification and identification	
		of microorganism. Microscopic examination	
		(Staining and microscopic techniques)	
2	Microorganism-Bacteria	Morphology and fine structure of bacteria. Cell	7
		wall structure in details. Cultivation of bacteria.	
		Reproduction and growth. Growth kinetics.	
		Isolation and preservation.	
3	Control of Microorganisms	Control of By physical and chemical agents. Role	7
		of antibiotics and chemotherapeutic agents	
4	Micro –organisms and	Multiple drug resistant bacteria and their biofilm	5
	Human diseases	lifestyle. Microbial diseases of skin and eye,	
		nervous system, cardiovascular & lymphatic	
		system, respiratory, and digestive system.	
5	The Viruses	Discovery, virus structure, classification, viral	5
		replication cycle, detection and enumeration of	
		viruses, virus cultivation in lab, viriods, prions.	
6	Bacteriophages	Morphology, reproduction of ds DNA phages, ss	4
		DNA phages and RNA phages.	
7	Plant Viruses	Nomenclature and classification, viruses infecting	4
		fruits and vegetables	

COURSE DESCRIPTION

L T P Hr C 3 0 4 7 5

8	Animal Viruses	Viruses containing ss(+) RNA, ss(-) RNA, ds RNA	4
0	Ammar Viruses	• · · · · · · · · · · · · · · · · · · ·	-
		and DNA and ssDNA, RNA tumor viruses	
		requiring DNA intermediate for synthesis.	
9.	The major group of	Growth and differentiation in fungi, Industrial	2
	Eukaryotic micro-	application of fungal cultures.	
	organism-Fungi.		
Total Number of lectures			45

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	30 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Microbiology: An introduction, G.J. Tortora, B.R. Funke, C.L. Case, 5th Edition, Benjamin Pub. Co. NY, 1992.
- 2) Medical Bacteriology, N.C. Dey, and T. K. Dey, Allied Agency, Calcutta, 17th Edition, 1988.
- 3) Text book of microbiology, R. Ananthnarayana, and C.E. Jayaram Panikar, 5th edition, Orient Longman, 1996.
- 4) Fields Virology D. Knipe and P. Howley. Vol.1 and 2- 4th Edition. Lippincott-Raven Publishers, 2006.
- Fundamentals of Molecular Virology, N. H. Acheson 2nd Edition. Wiley Publisher, 2011.

PRACTICAL IN MICROBIOLOGY AND VIROLOGY

(4 hrs per week)

Marks 100

Sr. No.	Name of the experiment	Learning objective
		troduction to Microscopy
1	Introduction to Microscopy	 a) To study the microscope and to observe different microorganisms like bacteria, protozoa, fungi and yeasts, algae – from natural habitat. b) Demonstration: Students will get familiar with different microscopic techniques such as TEM, SEM, Confocal-Microscopy, Flow cytometry and applications of these microscopic techniques in observation of bacterial biofilms.
	Int	roduction to Microbiology
2	Introduction to Microbiology Lab instruments	To understand the principle and use of different microbiology lab instruments such as incubator, oven, colorimeter, autoclave, pH meter, water-bath, analytical balance, biosafety cabinet, refrigerator, deep freezer (-80°C), magnetic stirrer, vortex mixer.
3 (a)	Introduction to Microbiology Lab practices- Preparation and autoclaving of different type lab media	 To become familiar with the necessary nutritional and environmental factors for culturing microorganisms in the laboratory. To understand the decontamination or sterilization process using an autoclave. To learn the procedures used in preparing media needed for culturing microorganisms.
3 (b)	Preparation of Petri plate and slant. Handling and Examining Cultures	 To learn the procedure used in preparing plate and slant for culturing microorganisms. To make aseptic transfers of pure cultures and to examine them for important gross features.
4	Isolation of bacteria and study bacterial colony characteristics	 To isolate pure cultures from a specimen containing mixed flora by using streak and spread plate technique. To study the different bacterial colony characteristics and to be able to differentiate between the general morphological types of bacteria.
5	Microbial staining techniques- (a) Simple and (b) differential staining	 To learn the value of simple stains in studying basic microbial morphology To learn the Gram-stain technique and to understand its value in the study of bacterial morphology
	Co	ontrol of Microorganisms
6	Antimicrobial activity (natural and synthetic) testing using - Disc Diffusion Assay, Well diffusion assay.	To learn the agar disk and well diffusion technique for antimicrobial susceptibility testing of different synthetic drugs and plant derived natural compounds against different Gram positive and Gram negative bacteria.
7	MIC and MBC of antibacterial compounds.	To learn MIC and MBC assay for antimicrobial susceptibility testing of different synthetic drugs and natural compounds against different Gram positive and Gram negative bacteria.
8	Biofilm inhibition activity of	To learn the anti-biofilm activity of different drugs against

		Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEMAD UNIVERSIT)
	synthetic antibiotics and plant derived natural compounds by microtitre plate assay.	different antibiotic resistance biofilm forming Gram positive and Gram negative bacteria by using crystal violate microtitre plate.
9	Oligodynamic action of heavy metals.	To understand a biocidal effect of metals against different microorganisms, especially heavy metals, that occurs even in low concentrations.
10	Growth curve and how curve is disrupted by an antimicrobial agent.	To understand the growth pattern of bacterial cells and the effect of antimicrobial agents on its growth.
11	Personal Hygiene – Effect of soap and disinfectant washing.	To study the activity of some disinfectants and to learn the importance disinfectant in skin cleaning.
	Micro	obial organisms and diseases
12 (a)	Isolation, identification of pathogens from clinical samples (urine, stool, pus)	
12 (b)	Demonstration of permanent slides of parasites	To identify and study parasites such as <i>Entamoeba histolytica</i> , <i>Ascaris</i> spp. <i>Plasmodium</i> spp. and <i>Leishmania</i> spp.
	-	Mycology
13 (a)	Distinguish between beneficial and harmful fungi and yeast.	To become familiar with essential and disease causing fungi and yeasts.
13 (b)	Isolation and microscopic observation of fungal cultures.	To become familiar with mycological culture techniques. To visualize and identify the structural components of fungi.
14	Enumeration of yeast cells by Neubaeur chamber. (Source of yeast – Oral thrush or vaginal thrush).	To determine the concentration of yeast cells in a given sample by Neubaeur chamber method.
15	Demonstration of permanent slides – Tissue section with fungal infection.	To become familiar with fungal infection to different human tissue.
	1	Virology
16	Isolation of bacteriophages by Plaque method	This assay is the most widely used technique for the isolation of virus and its purification, and to optimize the viral titers.
17	Viral infection diagnosis - Cytopathic effect (CPE)	To become familiar with morphological changes in cells caused by viral infections; the responsible virus is said to be cytopathogenic effect.

		(DEEMED UNIVERSITY)
18	Visit to a viral research	To become familiar with the research on animal viruses and
	institute – such as NARI or	viral diseases of human
	NIV, Pune	Preparation and production of antigens, diagnostic sera, vaccines, nucleic acid probe/s, etc.

References:

- 1) Basic Practical Microbiology: A manual 2006 Society for General Microbiology (SGM), 2006.
- Medical Laboratory Technology by K. L. Mukherjee, Vol III, 10th Edition, Tata Mc. Graw-Hill Pub Co., 1988.
- 3) Antimicrobial Chemotherapy by D. Greenwood, 3rd Edition, Oxford University Press, 1995.
- 4) Laboratory Manual and Workbook in Microbiology Applications to Patient Care by J. A. Morello, P. A. Granato, and H. E. Mizer, 7th Edition, The McGraw Hill Companies, 2003.
- 5) Textbook of Medical Laboratory Technology by P. B. Godkar and D. P. Godkar Vol 1 and 2 Bhalani Publishing, 2005.
- 6) Bergey's Manual of Systematic Bacteriology, Vol 1 and 2 Published by Springer, New York, 2015.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: GENETICS COURSE CODE: BT 303 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The students would understand Mendelian Genetics, its extensions, Non-Mendelian genetics, Sex determination, Genetic diseases, Syndromes, Chromosomal Aberrations, and Population Genetics

COURSE OUTCOME:

On completion of this course, the students will be able to:

- Describe the molecular principles of Mendelian genetics and chemical basis of heredity.
- Understand the effect of different factors such as environment & physical factors on regulation of gene expression.
- Gain knowledge about the chromosomal basis of inheritance and pedigree analysis.
- Demonstrate the basics of genetic mapping and sex determination.
- Explain the key concepts of population and quantitative genetics

PREREQUISITES:

Since the course comes under Basic sciences, school level knowledge of molecular biology and chemistry is required by the students to take up this course.

Sr. No	Торіс	Description	Hrs
1	History of Genetics	Historical views of heredity	2
2	Mendelian Genetics	 Mendel's experimental design. Mendelian laws and its application Punnett Square and forked line method. Probability Chi Square method. 	7
3	Extension of Mendelian laws	 Incomplete dominance and co-dominance. Multiple alleles. Gene Interactions that modifies Mendelian ratios: different type of epistasis, complementation analysis. Environmental effect on the expression of genes. Penetrance and expressivity, Pleiotropy. Position effect and genomic imprinting. 	7
4	Non-Mendelian inheritance	 Rules and examples of Non-Mendelian Inheritance: mitochondrial, chloroplast Maternal and uniparental inheritance. Infectious heredity Contrast to non-Mendelian inheritance (Maternal Effect) 	5
5	Chromosomal basis of inheritance	 Evidences for chromosome theory of inheritance: Sex chromosomes, Sex linkage and non-disjunction of X chromosomes. Analysis of sex-linked and autosomal traits in humans. Mendelian inheritance in Human ; Pedigree analysis 	7

COURSE DESCRIPTION

			(DEEMED UNIVERSITY)
6	Cytogenetics and	 Cytogenetic techniques. 	6
	linkage mapping	• Variations in chromosome structure and	
		number and associated disorders.	
		• Linkage and crossing over and gene mapping	
		in eukaryotes.	
7	Sex determination	• Genotypic (Mammals, <i>Drosophila</i> , <i>C</i> .	6
		elegans), genic and environmental	
		mechanisms.	
		• Mechanisms of dosage compensation in	
		Mammals, Drosophila, C. elegans	
8	Population genetics	• Genetic structure of population: genotype and	5
		allele frequencies	
		• The Hardy-Weinberg Law.	
		• Genetic variation: mutation, migration, natural	
		selection and random genetic drift.	
	Т	otal Number of Lectures	45

METHODOLOGY: The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Genetics A molecular approach, P. J. Russell., Pearson Benjamin Cummings, San Francisco Boston, New York, 2006.
- 2. Principles of genetics by Tamarin, 7th edition, The McGraw Hall Companies USA, 2002.
- 3. Essentials of genetics. By W. S. Klug, M. R. Cummings, Prentice-Hall Inc. USA, 1999.

PRACTICAL IN GENETICS (2 Hrs. Per Week)

MARKS: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
1	To study different model organisms (<i>Escherichia</i> <i>coli</i> , <i>Drosophila</i> <i>melanogaster</i> , <i>Caenorhabditis elegans</i> , <i>Mus musculus</i> ,	To understand the importance of usage of model organisms systems in genetic studies	Genetics, A Conceptual Approach by B. A. Pierce, 5 th edition, , W. H. Freeman & Company, 2013.
	Saccharomyces cerevisiae and Arabidopsis thaliana)		Human Molecular Genetics by A. P. Read
2	Estimation gene frequency in population / To study distribution of dominant and recessive traits in the population	To understand Mendelian inheritance patterns in Humans	and T. Strachan, 4 th edition, Taylor & Francis, 2011.
3	Mutants in <i>Drosophila</i> , monohybrid and dihybrid crosses in <i>Drosophila</i> ,	To understand Mendelian inheritance patterns	
4	Preparation of ideogram of human chromosomes and its analysis	To identify chromosomal anomalies	
5	To study the effect of genetic drift on sample population (Founder effect)	Understanding genetic drift in populations	
6	Sex Linked lethal in Drosophila	To understand sex linked inheritance	
7	To identify auxotroph mutants in bacteria	To understand recombination in Bacteria	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

4

NAME OF THE COURSE: CONCEPTS IN BIOINFORMATICS **COURSE CODE: BI 301** LT P Hr C **MARKS: 150** 2 0 4 6

OBJECTIVE:

The objective of the course is to familiarize the student with basic concepts in Bioinformatics

COURSE OUTCOME:

On completion of the course students will be able to:

- Apply knowledge of the working concepts of different computational tools.
- Describe the information and application of different databases and effective data retrieval for • solving research problem.
- Develop basic understanding of different techniques of sequence alignment and their utilization in phylogenetic analysis.
- Predict the secondary and tertiary structures of proteins and their active sites.
- Investigate specific contemporary biological questions in silico and critically analyze & interpret • the results.

PREREQUISITES

Students should be familiar with school level mathematics and Biology to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

Sr. No.	Topics	Detailed syllabus	No. of Lectures
1	Overview of	Overview and scope of Bioinformatics, Computers in	02
	Bioinformatics.	biology, medicine & different problems in biology.	
2	Introduction to nucleic	NCBI, EMBL, DDBJ, UNIPROT, PDB, SCOP,	05
	acid and protein	CATH.	
	databases.		
3	Data acquisition,	File formats: GenBank, EMBL, PDB, PIR, ALN	03
	Database content,	Types of database: flat file, relational, hierarchical,	
	structure and	network, object-oriented. Annotated sequence	
	annotation.	databases, Genome and Organism specific databases.	
4	Retrieval of Biological	Data retrieval tools: Entrez, SRS etc.	02
	Data.		
5	Pairwise sequence	Sequence comparisons & alignment concepts,	04
	alignment.	Global Alignments – Needleman-Wunsch Algorithm	
		Local Alignments – Smith-Waterman Algorithm	
		Introduction to Homology, Analogy, Orthology	
		Paralogy, Xenology.	
6	Multiple sequence	Methods of multiple sequence alignment, CLUSTALW	03
	alignment.	& MUSCLE Algorithms, Applications of MSA.	
7	Database similarity	FASTA, BLAST, PSI-BLAST algorithms.	02

COURSE DESCRIPTION

	searches.		(DEEMED UNIVERSITY)
8 Patterns, Motifs, and Derivation and searching,		Derivation and searching,	03
	Profiles.	Derived Databases of patterns, motifs and profiles	
		Prosite, Blocks, Prints, Pfam etc.	
9	Introduction to	Methods of phylogenetic analysis, cladistics,	03
	Phylogenetic analysis.	Building phylogenetic trees, evolution of	
		macromolecular sequences.	
10	Introduction to	Levels of protein structure, Analyzing secondary	03
	structural	structure, Ramachandran Plot, Protein structure	
	Bioinformatics.	prediction, RNA structure prediction, visualization	
		tools.	
		Total Lectures	30

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED

- 1. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins by Andreas Baxevanis, Francis Ouellette, Wiley-Interscience, 2005.
- 2. Introduction to Bioinformatics by T. K. Attawood & D.J. Parry-smith, 8th reprint, Pearson education, 2004
- 3. Bioinformatics: Sequence and genome analysis by D. W. Mount, 2nd edition, CBS Publication, 2005.
- 4. Fundamental Concepts of Bioinformatics by D. E. Krane and M. L. Raymer, Pearson Publication, 2006.
- 5. Bioinformatics: Tools & Applications by D. Edward, J. Stajich and D. Hansen, Springer, 2009.
- 6. Bioinformatics: Databases, Tools & Algorithms by O. Bosu and S. K. Thurkral, Oxford University Press, 2007.
- 7. Bioinformatics: Methods and Applications Genomics, Proteomics and Drug Discovery by S.C. Rastogi, N. Mendiratta, P. Rastogi, PHI Learning Pvt. Ltd., 2015.

PRACTICAL IN BIOINFORMATICS

(4 Hrs. Per Week) MARKS: 100

Sr.	Name of the	Learning objective	Literature/ Weblinks for reference
No.	experiment	Learning objective	and videos
1.	Introduction to Nucleic Acid and Protein Sequence Data Banks.	Explore and Search Nucleic acid Sequence Database NCBI, EMBL, DDBJ.	www.ncbi.nlm.nih.gov/genbank/ https://www.ebi.ac.uk/embl/
			www.ddbj.nig.ac.jp/
2.	Introduction to Protein Sequence Data Banks.	Explore and Search and use analysis tools at Protein Sequence Database: UNIPROT	http://web.expasy.org/docs/swiss- prot_guideline.html
2		DIACT	http://pir.georgetown.edu/
3.	Database Similarity Searches.	•BLAST •FASTA	https://blast.ncbi.nlm.nih.gov/ https://www.ebi.ac.uk/Tools/sss/fast a/
4	Database Similarity Searches.	PSI-BLAST,PHI-BLAST algorithms	https://blast.ncbi.nlm.nih.gov/
5	Multiple sequence alignments.	Clustering algorithm CLUSTALW, Tree View, MUSCLE	www.genome.jp/tools/clustalw/
6	Patterns, motifs and Profiles in sequences.	Study Derived Databases: PROSITE, BLOCKS, Prints Pfam etc.	https://prosite.expasy.org/prosite_lin k.html https://www.ncbi.nlm.nih.gov/pmc/a rticles/PMC102408/
7	Genome Databases.	Ensemble, TIGR, Flymine	http://plantta.jcvi.org/ www.flymine.org/
8	Protein Structure Databases.	PDB, SCOP, CATH	http://www.rcsb.org/pdb/home/home.do scop.mrc-lmb.cam.ac.uk/scop/
9.	Structure Visualization and Manipulation	Structure Visualization Tools: Pymol, RASMOL	https://pymol.org/
10	Data Structure Algorithms	Data Structure Algorithms for gene, protein sequence analysis.	https://www.perl.org/

BOOK RECOMMENDATION:

Bioinformatics: A practical guide to Analysis of Genes & Proteins by A. D. Baxevanis and B. F. Francis Ouellette, 3rd edition, John Willey and sons, 2005

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: BIOSAFETY, BIOETHICS AND INTELLECTUAL PROPERTY RIGHTSCOURSE CODE: BT 304LTPHrCMARKS: 5020022

OBJECTIVES:

The objective of the course is to make students learn about the legal, safety and public policy issues raised due to the rapid progress in Biotechnology and development of new products. The biotechnology students supposed to understand and follow the regulatory framework important for the product safety and benefit for the society. The students are given case history to discuss and express their views.

COURSE OUTCOME:

On completion of the course students will have:

- Adequate knowledge about the safety and risk of the use of genetically modified organisms and their effect on human health
- Insights into the regulatory affairs linked with biosafety and bioethics
- Knowledge regarding ethics to be followed during biological experiments and research
- Awareness about the concepts and significance of Intellectual Property Rights and take measures to protect their innovative ideas

PREREQUISITES:

This is an advance level course. Students must have an understanding of introductory undergraduate level course such as chemistry, biology, microbiology.

Sr. No	Торіс	Description	Hrs
1	Biosafety	Introduction and Development of Biosafety Practices and 1	12
		Principles	
		General lab requirements	
		Definitions and Biosafety levels: 1,2,3,4 & Summery 2	
		 Biological safety cabinets: centrifuges, Shipment of biological specimens, Biological waste management, Decontamination, Biosafety manuals, Medical surveillance, Emergency 	1
		response 3	
		Risks and Assessment of Risks 1	
		Biosafety at small scale and large-scale processes 1	
		Biosafety for genetically engineered microbes, plants and	
		animals 1	
		National biosafety committees 1	
		Biosafety and environment protection 1	
		International conventions 1	

COURSE DESCRIPTION

	-		Dr. D.Y. PATIL VIDYAPEETH, PU (DEEMED UNIVERSITY)	
2	Bioethics	History and Introduction 1	06	
		Ethics and genetic engineering 1		
		Genetic Privacy 1		
		Patent of genes		
		Human races, Trading Human Life, Human Cloning		
		Stem Cells, Eugenics, Christian faith, Human genome and		
		religious considerations		
		Case Studies and Final Considerations	1	
3	Intellectual	Introduction and Types of Intellectual Property Rights	12	
	Property	Patents 2		
	Rights	Copyrights, Trademarks, Industrial designs, Trade secrets,		
		Geographical Indications and Farmers rights & Plant variet	у	
		Protection.	4	
		IPR for Biotechnology, Patenting of transgenic organisms a	nd	
		isolated genes, microbes etc	2	
		-	2	
		Current status of IPR in India	1	
Total Number of Lectures				

METHODOLOGY

The course will be covered through lectures. The students will be given problems and case histories to discuss and clear their problems. The students will be evaluated based on two class tests, lecture and lab attendance, class participation, write up and quizzes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1. Understanding Biotechnology by A. Borem, D. E. Bowen and F. R. Santos, 1st edition, Pearson Education Inc., 2003.
- 2. Biotechnology an Introduction by S. R. Barnum, Brooks/Cole; International Edition 2004
- 3. Biosafety and Bioethics by R. Joshi, Isha Books, Delhi, 2006.
- 4. Introduction to Bioethics by J. A. Bryant and L. B. la Velle Bryant, 1st edition, Wiley Blackwel Publishing, 2005.
- 5. Intellectual Property Rights by C.B. Raju, 1st edition, Serials Publications, 2007.
- 6. Law Relating to Intellectual Property by B. L. Wadehra, Universal Law Publishing CO., Fourth Edition, 2007.

JYPU

TITLE OF THE COURSE: UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONYCOURSE CODE: HU 301LTPHrCMARKS: 10021033

HUMAN VALUES COURSES: During the Induction Program, students would get an initial exposure to human values through Universal Human Values – I. This exposure is to be augmented by this compulsory full semester foundation course.

OBJECTIVE: The objective of the course is four fold:

1. Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

3. Strengthening of self-reflection.

4. Development of commitment and courage to act.

PRE-REQUISITES: None. Universal Human Values 1 (Desirable)

COURSE TOPICS: The course has 28 lectures and 14 practice sessions in 5modules:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

1. Purpose and motivation for the course, recapitulation from Universal Human Values-I.

2. Self-Exploration–what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.

3. Continuous Happiness and Prosperity- A look at basic Human Aspirations

4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.

- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.

2. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility.

3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).

4. Understanding the characteristics and activities of 'I' and harmony in 'I'.

5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.

6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

1. Understanding values in human-human relationship; meaning of Justice

(nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship

2. Understanding the meaning of Trust; Difference between intention and competence

3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship

4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals

5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

1. Understanding the harmony in the Nature

2. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.

3. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.

4. Holistic perception of harmony at all levels of existence.

5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

1. Natural acceptance of human values

- 2. Definitiveness of Ethical Human Conduct
- 3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and ecofriendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.

- 5. Case studies of typical holistic technologies, management models and production systems
- 6. Strategy for transition from the present state to Universal Human Order:

a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers

b) At the level of society: as mutually enriching institutions and organizations

7. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. to discuss the conduct as an engineer or scientist etc.

READINGS: Text Book

 Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS :

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT (L-T-P-C 2-1-0-3 or 2L:1T:0P 3 credits): Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self- observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations.

Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values. It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8- day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example: Assessment by faculty mentor: 10 marks Self-assessment: 10 marks Assessment by peers: 10 marks Socially relevant project/Group Activities/Assignments: 20 marks Semester End Examination: 50 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

OUTCOME OF THE COURSE: By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to- day settings in real life, at least a beginning would be made in this direction.

This is only an introductory foundational input. It would be desirable to follow it up by

a) faculty-student or mentor-mentee programs throughout their time with the institution

b) Higher level courses on human values in every aspect of living. E.g. as a professional

SEMESTER IV						
Course Code	Course Name	L	Т	Р	Hr	Cr
BT 401	Molecular Biology	3	0	4	7	5
BT 402	Stem cells & Animal Tissue culture	2	0	2	4	3
BT 403	Plant Biotechnology	3	0	4	7	5
BT 404	Immunology	3	0	2	5	4
BT 405	Developmental Biology	3	0	2	5	4
	Total 14 0 14 28 21				21	

COURSE: MOLECULAR BIOLOGY COURSE CODE: BT 401 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the basic concept in molecular biology.

COURSE OUTCOME:

Upon completion of this course students will be able to:

- Discuss regarding significant discoveries through the historical progress and their impacts on the development of molecular biology
- Demonstrate the mechanisms of DNA replication, damage and repair in applied molecular genetics.
- Understand storage of genetic information and its transcription, translation and regulation at molecular level in prokaryotic and eukaryotic systems.
- Demonstrate a clear understanding on basic concepts of molecular biology and will be able to apply in different fields of Biotechnology

PREREQUISITES:

Since the course is advance in nature, student must know about biochemistry of nucleic acids, chromosomes and gene structure. Student must have background with Genetics.

Sr. No	Торіс	Description	Hrs
1	Introduction:	Concept of genes, Central dogma of Molecular Biology DNA as the genetic material Structure of DNA and RNA	2
2	Genome and its organization:	 Genome, cot analysis, C value paradox, Repetitive DNA, Satellite DNA, Gene families and gene clusters Nuclear and organelle genome 	3
3	Chromatin and Chromosome organization:	 Nucleosome structure, Higher order chromatin structure Chromosome structure in prokaryotes & eukaryotes 	3
4	DNA damage DNA Repair Recombination:	 Types of mutations. Replication errors and their repairs. DNA damage DNA repair – Single step and multistep Models of homologous recombination in eukaryotes and prokaryotes Non homologous and end joining (NHEJ) recombination Genetic consequences of mechanism of recombination. Site specific recombination and transposition of DNA: conservative site specific recombination, biological roles of sites recombination Gene conversion. 	10
5	Replication of DNA	Models of DNA replication	5

COURSE DESCRIPTION:

	1	Total Number of Lectures	45
9	Molecular evolution:	• DNA based phylogenetic trees and their applications.	1
		zippers, helix-turn-helix.	
		• Regulatory proteins (Transcription factors)- DNA-binding motif of regulatory proteins. Role of zinc fingers, leucine	
		 Regulation of gene expression in eukaryotes Regulatory proteins (Transcription factors) DNA binding 	
		attenuation in trp operon.	
	expression:	model- lac, trp operons. Transcriptional control by	
8	Regulation of gene	• Regulation of gene expression in prokaryotes: The operon	5
		Protein folding, Proteolysis	
		enzymatic modification of proteins	
		inhibitors.Post-translational modifications: Covalent and	
		• Inhibitors of protein synthesis – antibiotics and other	
		factors	
		• Translation process- Initiation, Elongation & termination of translation in prokaryotes and eukaryotes, Translational	
	modifications:	 tRNA & aminoacyl tRNA synthetases, Ribosomes Translation process. Initiation Elongation & termination of 	
7	Translation and post translational	 General features of genetic code tDNA & aminoacul tDNA sumthatasas, Dibasamas 	8
7	Tronalotion on 1		0
		Inhibitors of transcription	
		• Capping and poly-adenylation, RNA splicing and splicing mechanisms. RNA editing	
		RNA:	
		Posttranscriptional modifications/processing of eukaryotic	
		 Monocistronic and polycistronic RNAs 	
		• Transcription process: Chromatin remodeling, Initiation, elongation and termination of RNA synthesis.	
		polymerases.	
	maturation	• RNA polymerases - E. <i>coli</i> and eukaryotic RNA	
	maturation	transcription units	
6	Transcription and mRNA processing,	• Components of transcriptional machinery in prokaryotes and eukaryotes: Promoters and Enhancer sequences and	8
		Telomeres. Inhibitors of DNA replication.	0
		• Replication of DNA and different models of replication	
		• Enzymes and proteins in replication	
		synthesis.	
		• Replication fork, continuous and discontinuous DNA	

METHODOLOGY

The course would be taught through lectures lectures supported by tutorials and assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Instant notes in Molecular Biology by Turner, Viva Publication, 1997.
- 2. Microbial Genetics by D. Freifelder, Jones & Bartlett, 2004.
- 3. Molecular Biology by D. Freifelder, Jones & Bartlett, 2008.
- 4. Molecular Biology of Gene Watson, by Baker et.al. 7th Edition, Pearsons Publication, 2013.
- 5. Molecular Biology of the Cell by B. Alberts, Talor & Francis, 2008.
- 6. Genes by Lewin and Benjamin, Editions IX, Jones & Bartlett, 2010

PRACTICAL IN MOLECULAR BIOLOGY (4 hrs. Per Week) MARKS 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of glassware, plasticware, reagents and stock solutions for molecular biology	Special preparations for carrying out molecular biology experiments	Molecular cloning by J. Sambrook, F. Edward and T. Maniatis, 2nd
2	To isolate DNA from a) bacteria b) animal tissues/cells c) plant material using appropriate methods	To understand the critical requirement of specific methods depending on source of DNA	edition, New York: Cold spring harbor laboratory press, 2012.
3	Quantification of DNA by UV absorption and analysis by agarose gel electrophoresis	To understand the quality, and quantity of DNA present per cell	
4	To isolate plasmid DNA from bacteria, restriction analysis and agarose gel electrophoresis	To distinguish between plasmid and genomic DNA in terms of size and migration properties in gel	
5	To isolate RNA from eukaryotic cells and analyse by denaturing formaldehyde agarose gel electrophoresis	To understand various types of RNA/RNA profile and quality of RNA preparation	
6	To find the Melting temperature of DNA	Measure temperature and estimate T_m from your data	
7	Isolation of nuclei, calcium activation of endonuclease resulting DNA ladder including the mononucleosome formation	Hands-on verification of the concept of chromatin structure	
8	Extraction of histone from nuclei and analysis by SDS-PAGE	Understanding the contribution of histones in the formation of chromatin	

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: STEM CELLS AND ANIMAL TISSUE CULTURE COURSE CODE : BT 402 MARKS: 100

L T P Hr C 2 0 2 4 3

OBJECTIVE OF THE COURSE:

Complete understanding of the science of Animal Tissue Culture and stem cells, with emphasis on Mammalian Cells.

COURSE OUTCOME:

By the end of the course, students will have sufficient scientific understanding and will be able to:

- Understand the basics of stem cells and animal tissue culture techniques
- Understand the usefulness of *in-vitro* cell culture model for various biological questions
- Know the preparation of media, assessment of cell growth and cryopreservation
- Demonstrate the ability to establish and maintain animal cell lines in culture
- Demonstrate the precautions to be taken to maintain aseptic cell cultures

PREREQUISITES:

Students should have undertaken a course in Cell Biology before taking this course on Stem cells and Animal Tissue Culture. Students should be aware of good laboratory practices.

Sr. No.	Торіс	Description	Hrs
1	Introduction:	History, Cell culture techniques, Equipment and sterilization methodology.	2
2	Introduction to animal cell cultures:	Nutritional and physiological: Growth factors and growth parameters General metabolism and Growth Kinetics	4
3	Primary cell cultures	Establishment and maintenance of primary cell cultures of adherent and non-adherent cell lines with examples.	3
4	Secondary cell cultures	Establishment and maintenance of secondary and continuous cell cultures	2
5	Characterization of cell lines	Karyotyping, biochemical and genetic characterization of cell lines, Identification of cells, adventitious agents	2
6	Application of cell cultures	Vaccine production ,e.g. Measles, Rabies Use of Hybridoma for production of monoclonal antibodies. Therapeutic biological products, cytokines etc	2
7	Bioreactors in animal cells	Bioreactors for large-scale culture of animal cells	2
8	Tissue engineering	Principle and theory of tissue engineering Applications of tissue engineering	3
9	Cryopreservation and tissue culture applications	Cryopreservation Tissue culture applications	1
10	Stem Cells Introduction	What Are stem cell? Where Do stem cell Come from? Why Are stem cells here? Where Are stem cells going?	1

11	Stem Cells from Early Mammalian Embryos Adult stem cells ,Mesenchymal stem cells	Introduction to ES cells, EC cells, EG cells and TS cells. Their origin and characteristics. Adult stem cells ,Mesenchymal stem cells	4
12	Embryonic Stem cells	Isolation of ES cells Salient features of ES cells Application of ES cells.	2
13	Stem Cells to Functional Tissue Architecture	What Are the Signals? How they are processed?	2
14	Stem Cells and Cloning	Therapeutic and reproductive cloning Nuclear Transfer method Application of NT ES cells. Safety of NT ES cells.	3
15	Future for stem cell research Ethics	Medical treatment Organ regeneration Ethical consideration ,Regulating issues	1
		Total	34

METHODOLOGY

The course would be taught through lectures, demonstrations and LCD powerpoint presentation

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1) Culture of Animal Cells A manual of basic technique and specialized applications by R. I. Freshney, 6th edition, Wiley-Blackwell, 2010.
- 2) Animal Cell Technology: From Biopharmaceuticals to Gene Therapy. L. R. Castilho et. al. Taylor & Francis Group, 2008.
- Animal Biotechnology, by A. Akbarsha et. al., 1st edition, Pearson Education 2012.
 Basic Cell Culture by J. M. Davis, 2nd Edition, Oxford University Press, 2002.
- 5) Stem cell handbook, by Stewart Sell, Humuna Press. Inc. 2004.

PRACTICAL IN STEM CELLS AND ANIMAL TISSUE CULTURE

(2 Hrs. Per Week) MARKS 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference
1	Laboratory set-up and Equipment used in ATC	To understand the functions of ATC Laboratory and use of equipment in ATC	Culture of Animal Cells – A manual of basic technique and specialized applications by R. Ian
2	Preparation of Ca ⁺⁺ -Mg ⁺⁺ -free phosphate buffered saline	The uses and method of preparation of PBS	Freshney, 6 th edition, Wiley- Blackwell 2010 Development of 3D Alginate
3	Preparation of cell culture medium	Composition and preparation of cell culture medium	Encapsulation for Better Chondrogenic Differentiation
4	The practice of aseptic technique	Importance and practical knowledge of aseptic technique in ATC	Potential than the 2D Pellet System, T. Debnath et. al., J Stem Cell Res
5	Subculturing of adherent cell line, with counting & viability staining of cells	Procedure, principle and nuances of passaging adherent cells, use of hemocytometer, Trypan Blue staining	Ther 5:276. 2015 Apoptosis mediated cytotoxicity induced by isodeoxyelephantopin on nasopharyngeal carcinoma cells,
6	Cryopreservation and thawing of cells	Principle, procedure and critical steps in freezing and thawing cells	A.K. Farha et. al., Asian J Pharm Clin Res, Vol 6, Suppl 2, 51-56, 2013.
7	Isolation of peripheral blood mononuclear cells	Method of density gradient centrifugation for PBMC isolation	
8	Isolation and culture of primary cells.	Technique and importance of primary cell culture	
9	Encapsulation of cells in alginate beads and MTT staining	Use and method for preparation of cell- laden alginate beads	
10	Cytotoxicity testing using cultured cells	Application of cultured cells for cytotoxicity testing	

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

Dr. D.Y. PATIL VIDYAPEETH, PUNE

COURSE: PLANT BIOTECHNOLOGY COURSE CODE: BT 403 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic concepts and advanced research areas in plant biotechnology.

COURSE OUTCOME:

By the end of the course, students will have sufficient scientific understanding & will be able to:

- Demonstrate various sterilization techniques applied in plant biotechnology laboratory and know the components and preparation of media for tissue culture
- Establish and maintain plant cells in tissue culture and understand micropropagation
- Demonstrate different methods for transformation of plant cells or plants
- Understand the significance and perform in vitro production of valuable plant secondary metabolites for medicinal/commercial purposes

PREREQUISITES

Since the course is advance in nature, student must know about sterilization techniques and basic knowledge of plant sciences and molecular biology.

Sr. No	Торіс	Description	Hrs
1	Introduction	Introduction to Plant Biotechnology	1
2	Plant development	Embryo development, meristem development, differentiation and organ formation	3
3	Growth Hormones	Auxins, Cytokinins, Gibberellins, ABA and Ethylene as regulators of plant development	3
4	Plant Tissue culture Techniques	Totipotency, differentiation, redifferentiation, Techniques- explants, nutrient media, aseptic manipulations, incubation Callus culture, Suspension culture	6
5	Micropropagation	Pre-existing meristems Direct and indirect Organogenesis Somatic embryogenesis Different stages of micropropagation & Applications Germplasm conservation	2 2 2 4 2
6	Plant genetic engineering	Agrobacterium as a natural genetic engineer Agrobacterium based vectors (selectable and screenable markers) Transformation methods a) Agrobacterium b) Direct gene transfer	2 2 3

Total Number of lectures			45
			-
		Bioreactors.	2
		Elicitors & biotransformation	2
		Hairy root culture	2
		In vitro production of secondary metabolites	4
7	Plant Natural Products	Secondary Metabolites, Types, Pathways	2
		Applications	1
		Selective analysis of transgenics	2
			(DEEMED UNIV

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Plant tissue Culture : Theory and Practice by S.S. Bhojwani and M.K. Razdan, Elsevier, Amsterdam, 1996.
- 2. An Introduction to Plant Biotechnology by H. C. Chawla, Oxford and IBH, 2002.
- 3. Gene Transfer to Plants by I.Potrykus and G. Spangenberg, Springer Lab Manual, Springer Verlag, 1997
- 4. Plant Biotechnology: New Products and Applications by J. Hammond, P. McGarvey, V. Yusibov, Springer Verlag, 1999.
- 5. Plant Biotechnology: The Genetic Manipulation of Plants by A. Slater, N. Scott and M. Fowler, Oxford University Press Inc. (2008)
- 6. Plant Physiology by Lincoln Taiz and Eduardo Zeiger. Panima Publishing Corporation, 2003
- 7. Plant Physiology by L. Taitz, 3rd edition & 5th edition, Sinauer Associates Inc., Publishers Sunderland, Massachusetts U.S.A. 2002 & 2014.

PRACTICALS IN PLANT BIOTECHNOLOGY (4 hrs. Per Week)

MARKS 100

Sr. No	Name of the experiment	Learning objective	Literature/ Weblinks for reference
1	Aseptic culture techniques for establishmentand maintenancemaintenanceofinvitrocultures	To learn the aseptic manipulation techniques for successful plant tissue culture experiments.	1) Plant Tissue Culture, K. K. Dey, New CentralBook Agency, 2007
2	Preparation of stock solutions of MS basal medium and plant growth regulators	To understand need of stock solution for media and growth regulators stock preparation and calculation of the same.	2) Plant tissue Culture: Theory and Practice by S.S. Bhojwani and
3	Preparation of Nutrient media	Preparation of PTC media using media and growth regulators stock solutions	M.K. Razdan, Elsevier, Amsterdam, 1996.
4	Callus culture by using Carrot explant/ Leaf explants and somatic embryogenesis	To understand procedure of surface sterilization of explant and perform callus culture and embryogenesis	3) Plant Biotechnology and its applications in Plant tissue culture by A. Kumar and S. Roy,
5	Establishment of suspension culture by using callus/ isolated cells	Understand procedure and importance of suspension culture	I. K. International Publishing House, 2006.
6	In vitro embryo culture	To learn embryo rescue through <i>in vitro</i> method	4) Molecular cloning:
7	Micropropagation by using axillary bud /apical meristem	To study micropropagation for regeneration of plants for various fields.	a laboratory manual. J. Sambrook, D.W.Russell, 3 rd edition, New York:
8	Isolation and purification of active compounds from plants by column chromatography technique	Isolation and identification of plant secondary metabolites	Cold Spring Harbor Laboratory,. II, P 125 – 127, 2012.
9	Agrobacterium tumefaciens- mediated plant transformation	To understand importance and process for <i>Agrobacterium</i> mediated plant transformation	
10	GUS staining of transformed plants	To learn the technique to identify the transformants.	

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: IMMUNOLOGY COURSE CODE: BT 404 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the immune system and it's function and the advances in the immunology.

COURSE OUTCOME:

On successful completion of this course students will:

- Understand the basics of immunology, cellular and molecular basis of response and its regulation
- Demonstrate fundamental principles in the interpretation of immunological responses
- Demonstrate the significance of immunology in protection against autoimmune disorders and various diseases

PREREQUISITES:

Student should have background of cell biology. They should know basic concept of molecular biology also to understand expression of immunoglobulin gene. They should know some basic assays.

Sr.	Торіс	Description	Hrs
No.			
1.	Introduction to Immune System (i) The Cells and soluble mediators	1. Historical Perspective: Early vaccination studies, Early studies of Humoral and Cellular Immunity, Theoretical Challenges, Infection and Immunity (in brief)	8
	of the Immune system	 2. The Cells and soluble mediators of the Immune system (i) Cells of the immune system : Phagocytes, B cells & T cells, Cytotoxic cells, and Auxillary cells (ii) Soluble mediators of immunity : Acute phase proteins, Complement proteins & Cytokines 	
	(ii) Organs of the Immune system	 Immune response to pathogens : Innate and Adaptive Immunity Innate Immune response, Pathogen Associated Molecular Patterns (PAMPs), Phagocytes and Lymphocytes as a key mediators of Immunity Adaptive Immune Response : Features of the adaptive immune response: (Specificity and Memory), Humoral Immunity & Cell- mediated Immunity (Antigen recognition and Antigen eradication, B cell clonal selection, Concept of antigen processing & presentation on MHC molecules) Principle of vaccination Inflammation: Principle components, Chemotaxis Consequences of Immune system failure : Autoimmunity, Immunodeficiency, & Hypersensitivity Primary and Secondary lymphoid Organs Primary lymphoid Organs (Lymph nodes, Spleen, and Mucosa associated Lymphoid tissue (MALT) 	
2.	Generation of B cell & T cell response	 Immunogenicity Versus Antigenicty Haptens as valuable research and diagnostic tools Properties of Immunogen Contributing to Immunogenicity Biological System contribution in Immunogenicity 	4

		Dr. D.Y. PATH, VIDYAPE Dr. D.Y. PATH, VIDYAPE	ETH, PUNE
		5. Adjuvants : Freund's incomplete and complete adjuvant6. Epitopes : Characteristic Properties of B-cell epitope	
3.	Immunoglobulins Structure and Function	 Basic structure of antibodies, Chemical and enzymatic methods for basic antibody structure Fine structure of antibodies Antibody Classes and Biological activities Antigen determinants on Immunoglobulins : Isotype, Allotype & Idiotype Immunoglobulin Superfamily Monoclonal Antibodies 	6
4.	Antibody- mediated effector functions	 Opsonization Activation of complement system : Classical and alternative pathway Antibody-dependent cell mediated cytotoxicity (ADCC) 	3
5.	Organization and Expression of Immunoglobulin genes	 Immunoglobulin genes organization & Rearrangements Generation of antibody diversity Synthesis, assembly, and Secretion of Immunoglobulins Antibody Engineering 	4
6.	Antigen-Antibody Interactions	 Strength of antigen and antibody interactions: Antibody affinity, antibody avidity, and Cross reactivity Precipitation reactions (Immunodiffusion and Immunoelectrophoretic technique) Agglutination reaction Radioimmunoassay Enzyme linked Immunosorbant Assay (ELISA) Western blot Immunoprecipitation Flow Cytometry 	6
7.	The Major Histocompatibility Complex (MHC) and Antigen presentation	 General Organization and Inheritance of the MHC, MHC molecules Peptide binding by class I and class II MHC molecules Experimental demonstration to prove processing of antigen is required for recognition by T cells Antigen Presenting cells (APCs) Antigen-Processing and Presentation Pathways (i) Endogenous Antigens: The Cytosolic Pathway (ii) Exogenous Antigens: The Endocytic Pathway 	4
8.	Immune system in Health and Disease	 Tolerance and Autoimmunity: Central and Peripheral Tolerance Establishment and Maintenance of Tolerance, Autoimmunity, Organ-Specific Autoimmune disease, Systemic Autoimmune Disease Transplantation Immunology: Immunological basis of graft rejection, HLA typing, Mixed Lymphocyte Reaction, General Immunosuppressive Therapy Immune Response to Infectious Diseases (Viral infections (Influenza virus) and bacterial infections (<i>Mycobacterium tuberculosis</i>), and Parasitic disease (<i>Plasmodium species</i>) Vaccines: Active and Passive Immunization, Live, Attenuated vaccines, Inactivated or Killed Vaccines, Subunit and Conjugate Vaccines, DNA vaccines, Recombinant Vector Vaccines AIDS: HIV infection of target cells and Activation of Provirus, Stages in viral replication cycle for therapeutic anti-retroviral drugs, Therapeutic agents inhibiting retrovirus replication 	6

6. Cancer and the immune system: Origin and terminology, Malignant transformation of cells, Oncogenes and Cancer induction, Tumors of	
the immune system, Tumor antigens, Tumor evasion of the immune system, Cancer immunotherapy	
Total Number of Lectures	41

METHODOLOGY:

The course would be taught through lectures, demonstrations and LCD powerpoint presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	30 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- Immunology by J, Kuby , 5th edition, W.H. Freeman and company, New York, 2002.
 Essentials of Immunology by I. M. Roitt, 10th edition, MOSBY, Elsevier Ltd. (International Edition), 2002.
- Cellular and Molecular Immunology by A. Abbas, 8th edition, Elsevier Ltd., 2014.
 Molecular Biology of the Cell by B. Alberts, 5th edition, Garland Science, 2007.

PRACTICAL IN IMMUNOLOGY (2 Hrs. Per Week)

MARKS 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	To determine Blood Group antigens by hemagglutination assay	To understand about the various blood group antigens present in a population; principle of agglutination	Immunology, The experimental Series – II by W. Luttmann, K. Bratke, M. Kupper, Myrtek, USA, Elsevier, Academic Press; 2006
2.	Detection of syphilis using RPR card test	Immunological detection of specific bacterial infections by indirect agglutination	Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6 th edition, ASM Press, 2002. Practical immunology by F. C. Hay, M. R. Olwyn, 4 th edition, Westwood. Blackwell Publishing Company; 2002. Immunology by J. A. Owen, J. Punt, S. A. Kuby, 7th edition, USA: Susan Winslow; 2013
3.	Detection of typhoid infection by WIDAL test	Immunological detection of specific bacterial infections by direct agglutination	Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6 th edition, ASM Press, 2002. Immunology by J. A. Owen, J. Punt, S. A. Kuby, 7th edition, USA: Susan Winslow; 2013
4.	Density gradient separation of PBMCs using Histopaque-1077	Principle of density gradient separation of immune cells	Immunology by M. D, J. Brostoff, D. B. Roth, I. Roitt, 7th edition, Elsevier, 2007. Immunology, The experimental Series – II by W. Luttmann, K. Bratke, M. Kupper, Myrtek, USA, Elsevier, Academic Press; 2006 Cell Separation Media Methodology and Applications 18111569, handbook GE Healthcare Isolation of mononuclear cells Methodology and Applications 18-1152-69, handbook GE Healthcare http://www.gelifesciences.com/handbooks/

	1	Γ	Dr. D.Y. PATIL VIDYAPEETH (DEEMED UNIVERSITY)
5.	To study interaction of antigen and antibody by Ouchterlony double diffusion assay	To learn about precipitin phenomena at equimolar concentrations of antigen and antibody	 A handbook of practical and clinical immunology by G. P. Talwar, S. K. Gupta, 2nd ed. Vol. I & II; 2006 Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6th edition, ASM Press, 2002. Practical immunology by F. C. Hay, M. R. Olwyn, 4th edition, Westwood. Blackwell Publishing Company; 2002. Immunology by M. D, J. Brostoff, D. B. Roth, I. Roitt, 7th edition, Elsevier, 2007.
6.	Determination of antibody titre by ELISA	To learn about different types of ELISA method and their applications	 A handbook of practical and clinical immunology by G. P. Talwar, S. K. Gupta, 2nd ed. Vol. I & II; 2006 Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6th edition, ASM Press, 2002. Immunology by J. A. Owen, J. Punt, S. A. Kuby, 7th edition, USA: Susan Winslow; 2013.
7.	Production of polyclonal antibodies in mouse	Principle of immunization, collection and analysis of serum for antibody	A handbook of practical and clinical immunology by G. P. Talwar, S. K. Gupta,. 2 nd ed. Vol. I & II; 2006
8.	Purification of IgG from serum	Single step purification of IgG by affinity chromatography	Physical Biochemistry, D. Freifelder, 2 nd ed. W.H. Freeman and Company, New York; 1982 Affinity Chromatography, Vol. 1: Antibodies, 18103746, handbook GE Healthcare http://www.gelifesciences.com/handbooks/

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

COURSE: DEVELOPMENTAL BIOLOGY COURSE CODE: BT 405 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to develop a basic understanding of animal development, emphasizing on various stages in embryonic development. The course would also give an insight on the influences of environment in animal development and applications of basic research in developmental biology.

COURSE OUTCOME:

Upon completion of this course students will:

- Acquire knowledge about the fundamental aspects in animal development.
- Demonstrate a clear understanding of different developmental aspects in major groups of organisms.
- Understand the concepts of differential gene expression, which leads to generation of complexity in organisms.
- Understand the importance of developmental biology in sex and reproduction including *in-vitro* fertilization and cloning of animal cells etc.
- Demonstrate the importance of environmental influences on development and the translational aspects of developmental biology

PREREQUISITES:

The course requires senior school (10+2 or equivalent) level knowledge of development in animals.

Sr.	Торіс	Description	Hours
No			
1.	Introduction to	• Early beliefs in organismal development	2
	Developmental	• Discovery of primary embryonic organizer	
	Biology		
2.	Gametogenesis and Fertilization	 Spermatogenesis and Oogenesis in placental mammals (mouse/human) Comparison of internal and external fertilization Steps in the fertilization process in mouse/human: Capacitation of sperm, Acrosome Reaction, Sperm-egg fusion, Activation of the egg, Fusion of sperm and egg pro-nuclei, Prevention of polyspermy (with 	6
		reference to placental mammals and sea urchin)	
3.	Embryonic Cleavage	 Cytoskeletal mechanisms in cleavage Maternal-zygotic transition Types of cleavage based on potentiality of blastomeres, position and amount of yolk, and position of mitotic spindles Emphasis on cleavage in embryos of echinoderms (sea urchin), molluscs (snail), amphibians (frog) and placental mammals (mouse/human) 	5
4.	Stages after embryonic cleavage and Gastrulation	 Pre-implantation and implantation of mouse/human embryos Primary germ layers and their derivatives in 	5

		Dr. D.Y. PATIL VIDY (DEEMED UNP
	 placental mammals Various types of morphogenetic movements during gastrulation Gastrulation in mouse/human embryos with emphasis on primitive streak, differentiation of lateral mesoderm and somitogenesis 	
5. Genes and Development	 Origin of gene theories in development Genomic equivalence: Evidences with emphasis on metaplasia and animal cloning, and exceptions to the rule Differential gene expression: Regulation at the level of genome, transcription, translation and post-translation Gene silencing: Antisense RNA and Gene knockouts Cell fate specification based on position and lineage in early embryogenesis Lateral inhibition in <i>Drosophila</i> neurogenesis 	7
6. Axes formation and Organogenesis	 Axes formation and early embryonic patterning in <i>Drosophila</i> and vertebrates Homeotic genes Development of the germ layer derivatives with emphasis on the formation of central nervous system and epidermis, fore-limb and hind-limb in vertebrates 	6
7. Metamorphosis and Regeneration	 Complete and incomplete metamorphosis, metamorphosis in insects and Anurans Epimorphosis, Morphallaxis and Compensatory regeneration 	4
8. Environmental influences in development	 Environmental disruption of normal development Teratogens, with emphasis on alcohol, retinoic acid and pathogens Endocrine disruptors 	4
9. Translational developmental biology	 Biology of stem cells Applications of stem cells in regenerative medicine Assisted reproductive technology on <i>in vitro</i> fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI) Genetically modified organisms (GMOs) and their applications in biomedical research 	4
Το	tal Number of lectures	44

METHODOLOGY:

The course would be covered through lectures and group discussions using teaching aids.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS/JOURNALS RECOMMENDED:

- 1. Developmental Biology, Eleventh Edition, S. F. Gilbert, M. J. F. Barresi, Sinauer Associates Inc.; 2016.
- 2. Principles of Development, Fifth Edition, L. Wolpert, C. Tickle and A. M. Arias, Oxford University, 2015.
- 3. Essential Developmental Biology, Third Edition, Jonathan M. W. Slack, Wiley- Blackwell; 2012.
- 4. Stem Cells Handbook, Edited by S. Sell, Second Edition, Humana Press, New York, USA; Year 2013.
- 5. Genes and Development, Cold Spring Harbor, New York, USA, Years: 1987-present.
- 6. Development, The Company of Biologists, United Kingdom, Years: 1953–present, **Journal ISSN**: 0950-1991 (print); 1477-9129 (web), (Former name: Journal of Embryology and Experimental Morphology).
- 7. Developmental Biology, Elsevier B.V., Amsterdam, Netherlands, Years: 1959–present, Journal ISSN: 0012-1606 (print); 1095-564X (web).

PRACTICAL IN DEVELOPMENTAL BIOLOGY (2 hours per week)

MARKS: 50

Sr. No.	Name of the Experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Introduction to life cycle in animal development (eg: <i>Drosophila</i>).	Familiarization with various stages of life cycle in insects. Understanding the the phenomenon of metamorphosis, and differentiation of the sexes.	Fly Pushing: The theory and practice of <i>Drosophila</i> genetics, By R. J. Greenspan 2 nd Edition The Neurosciences Institute, San Diego.
2.	Dissection and identification of imaginal discs in the third instar larval stages in <i>Drosophila</i> .	Familiarization with the location and types of the progenitors of various adult structures.	 Dissection of imaginal discs from 3rd instar <i>Drosophila</i> Larvae, D. C. Purves and C. Brachmann. <i>J Vis Exp</i>; (2): 140. 2007. The preparative isolation of imaginal discs from larvae of <i>Drosophila Melanogaster</i>, J. W. Fristrom and H. K. Mitchell, <i>J Cell Biol</i>; 27: 445– 448, 1965.
			3) Fly Pushing: The theory and practice of <i>Drosophila</i> genetics, By R. J. Greenspan 2 nd Edition The Neurosciences Institute, San Diego.
3.	Preparation and mounting of <i>adult Drosophila</i> <i>structures</i> in Hoyer's medium or Canada balsam.	Familiarization with wings, legs and thorax in adult flies and understanding the patterning of these cuticular structures.	 Preparation and mounting of adult <i>Drosophila</i> structures in Canada balsam, D. L. Stern and E. Sucena, <i>Cold Spring Harb</i> <i>Protoc</i>; 373-375, 2012. Preparation and mounting of adult <i>Drosophila</i> structures in Hoyer's medium, D. L. Stern and E. Sucena, <i>Cold Spring</i> <i>Harb Protoc</i>, 107-109, 2012.
4.	Examination of external morphology of <i>Drosophila</i> eyes using nail polish imprint technique.	Understanding the patterning of compound eye in insects.	A simple nail polish imprint technique for examination of external morphology of <i>Drosophila</i> eyes, R. Arya and S. C. Lakhotia, <i>Curr Sci</i> ; 90:1179-1180, 2006.
5.	Preparation and identification of 48 hours and 96 hours chick whole-embryos using filter paper ring technique.	Familiarize with prominent structures formed during organogenesis in early chick embryos.	Improved method for chick whole-embryo culture using a filter paper carrier, S. C. Chapman et al, <i>Dev Dyn</i> ; 220:284-289, 2001.

Sr. No. 6.	Name of the Experiment	Learning objective Observation of cell death	Literature/ Weblinks for reference and videos
0.	Study of cell death during morphogenesis	in chick embryos (5 days old) limd morphogenesis	
7.	Staining bone and cartilage in zebrafish (<i>Danio rerio</i>) embryos.	To study skeletogenesis using a unique model that is amenable to developmental analyses and genetic screening.	 A two-color acid-free cartilage and bone stain for zebrafish larvae, M. B. Walker and C. B. Kimmel, <i>Biotechnic</i> & <i>Histochemistry</i>, 82: 23-28, 2006. Zebrafish embryology and cartilage staining protocols for high school students, Emran F et al, <i>Zebrafish</i>; 6: 139-143, 2009.
8.	Study of regeneration in Hydra	Observation of regeneration process in Hydra	

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	SEMESTER V					
Course Code	Course Name	L	Т	P	Hr	Cr
BT 501	Environmental Biotechnology	2	0	2	4	3
BT 502	Recombinant DNA Technology	3	0	4	7	5
BT 503	Biochemical Engineering & Bioprocess Technology	3	1	4	8	6
BT 504	Enzymology & Enzyme Technology	2	0	2	4	3
HU 501	Personality & Skill Development	2	0	0	2	2
BI 501	R Programming	1	0	0	1	1
BT 505/506/507	Elective-I	3	0	2	5	4
		16	1	14	31	24
	Total					
Elective I (Biopharmaceuticals/ Clinical Research/ Huma	n Disease	s and	Patho	biology	7)

COURSE: ENVIRONMENTAL BIOTECHNOLOGY COURSE CODE: BT-501 MARKS: 100

L T P Hr C 2 0 2 4 3

OBJECTIVES OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Environmental Biotechnology.

COURSE OUTCOME:

Upon completion of this course students will be able to:

- Demonstrate the significance of unpolluted surrounding environment and also different sources and types of pollutants.
- Demonstrate the significance of bioremediation, waste management and biofuels
- Understand the use of modified organisms (microorganism or plant) for the removal of certain undesirable molecules from air, soil or water as an essential requirement of bioremediation

PREREQUISITES

Since the course is very important in science, student must know about the new biotechnological methods which to apply in environment. Student must have background with Biotechnological aspects and molecular genetics.

Sr.	Торіс	Description	Hrs
No.			
1	Environmental Biotechnology	Role of Biotechnology in protection and conservation of Environment	02
2	Environmental Pollution	Types of Pollution and their sources (Water pollution, Soil Pollution, Air Pollution, Noise Pollution) Case studies and Innovative technologies for preventing pollution	04
3	Microbiology of waste water treatment	Aerobic System Biological processes for domestic and industrial waste water treatments; Aerobic systems - activated sludge process, trickling filters, biological filters, rotating biological contractors (RBC), Fluidized bed reactor (FBR), expanded bed reactor, Inverse fluidized bed biofilm reactor (IFBBR) packed bed reactors air- sparged reactors. Anaerobic System Anaerobic biological treatment - contact digesters, packed column reactors, UASB. Biofilms and its relevance in microbial survival	06
4	Microbiology of degradation of xenobiotics	Xenobiotics in environment Decay behavior of xenobiotics	03

5	Bioremediation	Bioremediation I & II	05
		Solid phase bioremediation - land farming, prepared beds,	
		Phytoremediation, Composting, Vermicomposting	
		technology	
6	Bio Fuels	Missographic and anonay requirements of markind	05
6	bio rueis	Microorganisms and energy requirements of mankind, Production of nonconventional fuels - Methane	05
		(Biogas), Hydrogen, Alcohols and algal	
		hydrocarbons, Use of microorganisms in augmentation of	
		petroleum recovery.	
		Bioplastic-biopol, microbial rubber & adhesive polymers	
7	Hazardous Waste	Biotechnology application to hazardous waste	03
	Management & safety	Management	
	guidelines for disposed	Detoxification of chemical waste	
8	Advances in	GIS in Environmental Management	02
	Environmental	Computer based Environmental modeling	
	Biotechnology	Design of ETPs	
		Total number of Lectures	30

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1. Stanier R. Y., Ingram J.L., Wheelis M.L., Painter R.R., General Microbiology, McMillan Publications, 1989.
- 2. Foster C.F., John Ware D.A., Environmental Biotechnology, Ellis Horwood Ltd., 1987.
- 3. Karrely D., Chakrabarty K., Omen G.S., Biotechnology and Biodegradation, Advances in Applied Biotechnology Series, Vol.4, Gulf Publications Co. London,1989.
- 4. Bioremediation engineering; design and application 1995 John. T. cookson, Jr. Mc Graw Hill, Inc.

PRACTICAL IN ENVIRONMENTAL BIOTECHNOLOGY

2 Hrs per week

Marks:50

- 1) Methods of sampling for pollution measurement
 - a) Statistical design for collection of samples from site
 - b) Air sampling (Impaction)
 - c) Soil sampling (soil probes/auger)
 - d) Water sampling (Niskin type or equivalent depth sampling)
- 2) Methods of Pollution Measurement (as per Indian and global recommendations)
 - a) Air pollution by measurement of SOX (sulphur oxides-di), NOX (nitrous oxide-di) and suspended particulate matter.
 - b) Water pollution by measurement of water conductivity, pH, dissolved oxygen, and turbidity.
 - c) Soil pollution by measurement of metals and organic compounds.
 - d) At least one representative biological indicator for each of air (lichens), water (Macroinvertebrate) and soil (Moss) pollution.
 - e) Graphical representation of the data collected after analysis of samples and comparison of values with Indian and Global standards.

3) Community analysis of polluted and non-polluted sites by PCR based methods (eukaryotic and prokaryotic domain primers). Comparison of polluted versus non-polluted sites to ascertain the possible alteration in community structure introduced due to pollutant.

- 4) Microbial biodegradation (aerobic and anaerobic) of any one pollutant (e.g. hydrocarbon) or any xenobiotic and study of its decay behaviour.
- 5) Bioremediation Monitoring uptake of heavy metals using biological methods- organisms.
- 6) Demonstration for biogas production/ visit to wastewater plant/ biogas plant.

Note: Wherever it is not possible to perform the experiment due to limitation of equipment or other reasons, a demonstration will be arranged, however no more than 10% practical's will be demonstrations.

PRACTICAL EVALUATION SCHEMEExaminationMarksPractical Internal (Continuous) assessment:20End semester examination:30Total:50

COURSE: RECOMBINANT DNA TECHNOLOGY COURSE CODE: BT-502 MARKS: 200

L T P HR C 30475

OBJECTIVES: To familiarize the student with emerging field of biotechnology i.e. Recombinant DNA Technology, as well as to create understanding and expertise in wet lab techniques in genetic engineering.

COURSE OUTCOME:

At the end of the course students will:

- Be able to obtain the fundamental principle of genetic engineering procedure.
- Attain competency to undertake genetic engineering by cloning any DNA/gene using tools of rDNA technology in an appropriate expression vector for recombinant protein production.
- Be able to design molecular techniques for diagnosis of various diseases.
- To assess the risk versus benefits of rDNA technology and practice, safety and other regulations for rDNA work.

Prerequisites: Knowledge of molecular biology is sufficient.

Description Sr. Topics Hours No • 1 Introduction Landmarks in Molecular biology and Biotechnology 3 What is genetic engineering and recombinant DNA technology? Advantages of using microorganisms in Genetic Engineering Genetic engineering in E. coli and other prokaryotes, yeast, fungi and mammalian cells. 2 Enzymes: DNA polymerases, ligases, reverse transcriptases, Tools in nucleases restriction endonucleases (Restriction modification genetic transferases. system, Restriction mapping) and, terminal engineering phosphatases, polynucleotide Kinase etc. Cloning vectors: plasmids, bacteriophage vectors, cosmids, 7 phagemids BAC, YAC vectors, Shuttle vectors, expression vectors etc. 3 Recombinant Polymerase chain reaction (PCR) and its types 8 DNA Molecular Probes and Nucleic acid labeling techniques Techniques (Northern, Southern Western) Blotting and Autoradiography, Hybridization, DNA printing, foot Electrophoretic mobility gel shift assay (EMSA) DNA sequencing, site directed mutagenesis and its applications DNA fingerprinting, RAPD, RFLP, AFLP. Different methods for analysis of gene expression Gene cloning Isolation and purification of DNA (genomic, plasmid) and RNA. 4 10 of of interestrestriction digestion, Isolation gene electrophoresis, Cutting and joining of DNA

		Dr. D.Y. PATIL VIDYAF (DEEMED UNIVERS
	Methods of gene transfer in prokaryotic and eukaryotic cells.	
	Methods for Recombinant selection and screening: genetic, immunochemical, South-western analysis, nucleic acid hybridization, HART, HRT	
	Expression of cloned DNA molecules and maximization of gene expression	
	Cloning strategies- genomic DNA libraries, cDNA libraries, subtractive hybridization, chromosome walking and jumping.	
5 Applications of Recombinant DNA technology	Gene therapy, medicine, crop improvement, disease resistance: In vivo approach, ex-vivo approach of gene therapy, Antisense therapy, Interference technology (siRNA, shRNA, miRNA) CRISPAR Cas 9 mediated gene therapy, Transgenics	8
6 Genetic disorders, Diagnosis and screening	Prenatal diagnosis, Single nucleotide polymorphisms, DNA microarrays, Future strategies.	4
7 Protein interaction technology	Two-hybrid and other two component systems Detection using GST fusion protein, co-immunoprecipitation, FRET, BRET, Phage display assays, Surface plasmon resonance (SPR) etc	3
8 The Human Genome Project	The Human Genome Project Objectives and its outcome.	2
Total	·	45

Methodology: The course will be covered through lectures supported by PowerPoint presentations, research articles and practical teaching.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal Exam I	60 min.	20
Internal Exam II	45 min.	15
Teachers assessment		05
End Semester Examination	2 Hrs 30 min.	60
Total		100

BOOKS RECOMMENDED:

1. Principles of Gene Manipulation and Genomics by Sandy B. Primrose and Richard Twyman, eighth edition, John Wiley and Sons Ltd, June 2016

2. Analysis of gene and Genome by Richard J Reece, Wiley, 2004

3. Gene Cloning and DNA Analysis: An Introduction by T. A. Brown, Sixth edition Wiley-Blackwell, 2013

4. Molecular Cloning A Laboratory Manual (Vol 1,2,3) Michael R. Green, Joseph Sambrook, Fourth edition, Cold Spring Harbor Laboratory Press, 2013

Practical in Recombinant DNA Technology (4 hours per week) MARKS: 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Requirement of a genetic engineering lab including physical containment facilities and other biosafety procedures	Stringency awareness of genetic engineering procedures safeguarding personnel biosafety and biocontainment	Guidelines for the use and safety of genetic engineering techniques or recombinant DNA technology IICA, 1988, ISSN 0534-5391
2	Culturing <i>Escherichia coli</i> K12 and making competent cells for transformation	Preparation of the host for genetic engineering experiments	Sambrook J. Molecular cloning: a laboratory manual. Vol.1 / J.Sambrook, D.W.Russell. – 4 th edition - New York: Cold Spring Harbor Laboratory, 2012. III, P.159 -162
3	Preparation of the vector DNA and target DNA, ligation and transformation	Preparationfortransformationofcompetent cells for genecloning	Fanglian He, Bio-protocol, standard DNA cloning DOI: <u>https://doi.org/10.21769/BioPro</u> toc.52
4	Elution of DNA from Agarose gel	Isolation of desired DNA fragments	Sambrook J. Molecular cloning: a laboratory manual. Vol.1 / J.Sambrook, D.W.Russell. – 4 th edition - New York: Cold Spring Harbor Laboratory, 2012. II, P 125 -127
5	Selection of transformants bya) Antibiotic resistanceb) Blue-white screeningc) Restriction analysis	Screening methods for trans formants to check presence of positive and negative clone	Sambrook J. Molecular cloning: a laboratory manual. Vol.1 / J.Sambrook, D.W.Russell. – 4 th edition - New York: Cold Spring Harbor Laboratory, 2012. III, P.210
6	Preservation and storage of clones	Different methods of clone preservation: Glycerol stock preservation, Filter paper preservation	Owens CB, Szalanski AL, Filter paper for preservation, storage, and distribution of insect and pathogen DNA samples J Med Entomol. 2005 Jul;42 (4):709-11
7	Cloning in expression vectors for expression of specific genes	Difference between cloning and expression vector	Sambrook J. Molecular cloning: a laboratory manual. Vol.3 / J.Sambrook, D.W.Russell. – 4 th edition - New York: Cold Spring Harbor Laboratory, 2012. XIX, P.1481-
8	Target DNA amplification by polymerase chain reaction	Set-up of PCR program in thermocycler	Sambrook J. Molecular cloning: a laboratory manual. Vol.1 / J.Sambrook, D.W.Russell. – 4 th edition - New York: Cold Spring Harbor Laboratory, 2012. VII, P 470 -476
9	DNA finger printing technique RFLP/RAPD	Phylogenetic analysis or Differences between individuals at molecular level.	Williams JG, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.

			Nucleic Acids Res. 1990 Nov 25;18(22):6531-5.
10	Bioinformatics tools in Genetic engineering	Restriction site identification on gene. Primer designing (Primer blast)	Ye J Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL, Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction BMC Bioinformatics. 2012 Jun 18;13:134. doi: 10.1186/1471- 2105-13-134. Vincze, T., Posfai, J. and Roberts, R.J. NEBcutter: a program to cleave DNA with restriction enzymes Nucleic Acids Res. 31: 3688-3691 (2003)

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE NAME: Biochemical Engineering and Bioprocess TechnologyCOURSE CODE: BT503LTPHrCMARKS: 20031486

OBJECTIVE OF THE COURSE

The objective of the course is to create general understanding amongst the students in the subject of Biochemical Engineering and fermentation technology through in-depth lectures. The objective of the course is creating an understanding of concepts of and basic principles in the subject with emphasis on how to apply the knowledge in industrial processes involving Biochemical Engineering. The students would learn industrial techniques as: Isolation, improvement, maintenance and preservation of microbial cultures, Design of media, bioreactors and downstream processes along with production studies during the tenure of their study.

LEARNING OUTCOME

At the end of this course student would be able to:

- Understand basic principles of fermentation technology as used in Biotechnology.
- Understand the basic principles of engineering knowledge to solve a critical industrial biotechnology problem.
- Apply the knowledge in production of useful metabolites.

PREREQUISITES

This is an introductory level course. Students are expected to have an understanding of introductory knowledge in Physics, Chemistry and Biology.

COURSE DESCRIPTION			
Sr. No.	Торіс	Description	Hrs
1.	Introduction to Biochemical Engineering and Bioprocess Technology	Historical background of Biochemical engineering, Introduction of industrially important biotechnologically products	2
2.	Isolation of microbes and Strain improvement	Isolation and preservation of industrially important microbes and introduction of strain improvement	4
3.	Design of fermentation media and inoculum development	Nutritional media components essential for growth of microorganisms and product formation, Media optimization using conventional and statistical designs, Inoculum development for bacterial, fungal and yeast strains	4
4.	Design of Fermenter, types of Bioreactors, Instrumentation and control	Design of fermenter and its important parts, Bioreactor types for products of microbial, plant and animal origin, Sensors for measurement of different bioprocess parameters, process control, Data analysis during process	8
5.	Sterilization	Sterilization of Fermenter (batch and continuous processes), Feed sterilization, filter sterilization and sterilization of liquid waste	4

	al Lectures	48
	development to downstream processing	
Metabolites	metabolites starting from inoculum	
Biosynthesis of	Examples of Industrial Production of few	4
	Economics	
	scale up, Introduction to Bioprocess	
Economics	consideration of important parameters for	
Scale up, Bioprocess	Concept of scale up and scale down and	2
	1 1	
		·
Fluid flow and Mass		4
	e	
	,	
Bioprocess Kinetics		10
		1.0
Downstream Processing	· ·	6
	Economics Biosynthesis of	of metabolites, Purification of metabolitesBioprocess KineticsIntroduction of Stoichiometric analysis and yield concept with examples, ideal and nonideal bioreactors, Kinetics of microbial growth, Batch, continuous, fed-batch

METHODOLOGY

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- P. F. Stanbury, A. Whitaker and S. J. Hall. 'Principles of Fermentation Technology', Pergamon Press, Oxford and revised editions 1995.
- J. E. Bailey, D. F. Ollis Biochemical Engineering Fundamentals, 2nd edition, McGraw-Hill, New. York) and revised editions 1986.
- Pauline Doran, Bioprocess Engineering Principles, Academic Press (1995) and revised editions.
- Shuler, ML and F. Kargi. Bioprocess. Engineering: Basic Concepts (Second Ed.). Prentice Hall, Englewood Cliffs, NJ. 2002.
- A.H. Patel. Industrial Microbiology. MacMillan 2000.
- Casida, L E JR Industrial Microbiology, Wiley Eastern (revised editions) 1984.

Practicals in Biochemical Engineering And Bioprocess Technology (4 Hrs. Per Week) MARKS : 100

LIST OF PRACTICALS

- 1. Isolation of industrially important microorganisms by screening methods such as enzyme producer, antibiotic producer etc.
- 2. Introduction of different Preservation techniques of industrially important microorganisms.
- 3. Demostration of various parts of lab scale fermenter and study of bioreactor design.
- 4. Study of microbial growth kinetics and growth curve. Determination of growth rate constant, generation time, specific growth rate and saturation constant.
- 5. Production of alpha amylase by solid state fermentation and downstream processing for recovery of enzyme and determination of enzyme activity.
- 6. Production of streptomycin/penicillin antibiotic by fed batch fermentation and determination of antibiotic activity.
- 7. Production of bioethanol from sugarcane juice and molasses. Downstream processing for recovery of bioethanol by simple distillation and chemical estimation of bioethanol.
- 8. Production of citric acid using *Aspergillus niger* by surface and submerged fermentation and study of rheological parameters. Recovery of citric acid by precipitation method and chemical estimation of citric acid.
- 9. Determination of $K_L a$ by sulphite oxidation method.
- 10. Determination of thermal death point and thermal death time of different microorganisms.
- 11. Immobilization of whole cells for demonstration of its biological activity.
- 12. Industrial visit to fermentation industry.

EVALUATION SCHEME PRACTICAL TRAINING

Duration	Marks
1 hour	30
	10
2.5 hours	60
	100
	1 hour

References:

- Manual of Industrial Microbiology and Biotechnology, (2nd Edition by Arnold L. Demain and Julian E. Davies, Ronald M. Atlas, Gerald Cohen, Charles L. Hershberger, Wei-Shou Hu, David H. Sherman, Richard C. Willson and J. H. David Wu)
- Industrial Microbiology-An introduction (By Michael J. Waites, Neil L. Morgan, John S. Rockey and Gary Higton)
 Principles of Fermentation Technology
 - (2nd edition, by Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Butterworth-Heinemann, An imprint of Elsevier Science
- 4. Fermentation and Enzyme Technology By D.I.C. Wang, C.L. Cooney, A.L. Demain, P. Dunnill, A.E. Humphrey & M.D. Lilly John Wiley and sons, New York

DY PU Dr. D.Y. PATIL VIDYAPEETH, PUNE

COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY COURSE CODE: BT-504 MARKS: 100

L T P HR C 2 0 2 4 3

OBJECTIVE

- To familiarize the student with enzyme classification, enzyme-substrate interactions as well as mechanism of enzyme action
- To create thorough understanding regarding kinetics of allosteric and non allosteric enzymes.
- To impart knowledge about modeling of enzyme systems and structure-function relations in enzymes.
- To familiarize the student with Immobilization techniques and applications.

COURSE OUTCOME:

At the end of the course, the students will have:

- Demonstrable understanding of structure, functions and the mechanism of various enzyme action
- Knowledge of different methods for purification and characterization of enzymes and also techniques involved in immobilization of enzymes and its significance
- Exposure to wide applications of enzymes in several industries and their future potentials as therapeutic targets

PREREQUISITES

This is an advanced course. The student should be aware of basics in enzymology as well as some fundamental aspects of biomolecules and chemistry.

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Enzymes	Classification: Trivial and Enzyme Commisions System of nomencleature C system, Properties of enzymes. Enzyme substrate interactions, enzyme substrate complex, concept of active site, transition state theory. Factors affecting enzyme activity: Effect of pH, temperature and substrate concentration on reaction rate	06
2	Mechanism of enzymatic Reactions	Enzyme Catalysis: Factors affecting catalytic efficiency - proximity and orientation effects. Bisubstrate reactions: single and double displacement reactions. Enzyme catalysis: acid- base, covalent and metal ion. Chemical modification of enzymes. Isoenzymes and multiple forms of enzymes.	05
3	Enzyme Kinetics	Enzyme activity, international units, specific activity, turnover number. Michaelis Menten equation, Significance of Km and Vmax, Enzyme inhibition and kinetics: competitive, non competitive, uncompetitive and mixed. Structure-Function Relations: chymotrypsin, lysozyme, metalloenzyme.	8
4	Allosteric interactions and Enzyme	Allosteric enzymes :Types, positive and negative cooperativity, theory of concerted and sequential models, kinetics of Allosteric enzymes.	5

			(DEEMED UNIVERSITY)
	Regulations	Enzyme Regulation: Feedback inhibition, covalent	
		modification and Zymogen activation.	
5	Enzyme	Methods of immobilization: ionic binding,	4
	Immobilization	adsorption, covalent binding (based on R groups of	
	and applications	amino acids), microencapsulation and gel	
		entrapment.	
		Applications of enzymes: Food processing,	
		medicine, diagnostics, leather industry, textile	
		industry.	
6	Enzyme	Recent advances in enzyme technology, enzyme	2
	Technology	engineering, artificial enzymes.	
		Total Lectures	30

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED

- Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic proteins by Nicholas C. Price and Lewis Stevens; 3rd edition, 2010
- Enzymes: Biochemistry, Biotechnology, Clinical Chemistry by Trevor Palmer; 2nd edition, 2008
- Enzyme Technology by Ashok Pandey, Colin Webb, Carlos Ricardo Soccol, Christian Larroche, 2005
- Principles of Biochemistry by Lehninger, Nelson Cox, 4th edition, 2017
- Biochemistry by Lubert Stryer, 4th edition,1995

PRACTICAL IN ENZYMOLOGY AND ENZYME TECHNOLOGY (2 Hrs. Per Week) MARKS: 50

Sr. No.	Name of the	Learning objective	Literature/ Weblinks for
	experiment		reference and videos
1	Handling of enzymes and estimation of specific activity of an enzyme (e.g. amylase, phosphatase, protease)	To understand enzyme substrate reactions, quantification of enzyme activity, concept of unit of enzyme, role of inhibitors, activators etc	Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, Page 149-158. Plummer DT. Introduction to Practical Biochemistry, third edition. Tata McGraw-Hill Edition; 1998.
2	Isolation of β-amylase from sweet potato (<i>Ipomoea batatas</i>)/ barley (<i>Hordeum</i> <i>vulgare</i>) and determination of enzyme activity using specific substrate	To learn procedures for isolation of crude enzyme from the given biological source and determine its activity To learn optimum conditions for isolation and activity analysis of enzymes from their biological source	Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, 149-158 p.
3	Purification of enzyme by ammonium sulphate precipitation	Fractionation of protein using ammonium sulphate Learning the technique of enzyme concentration based upon salting in and salting out principle. Comparative study on the purity of crude and purified enzyme	Jakoby WB. [23] Crystallization as a purification technique. Methods in Enzymology. 1971 Dec 31; 22:248-52.
4.	Effect of physicochemical parameters (pH, temperature) on the activity of enzyme	To understand the role of physicochemical factors for optimum activity of enzyme	Seligman AM, Chauncey HH, Nachlas MM, Manheimer LH, Ravin HA. The colorimetric determination of phosphatases in human serum. Journal Of

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
			Biological Chemistry. 1951;
			190:7-15.
5.	In situ enzyme activity	Principles of negative	Laemmli UK. Cleavage of
	staining on SDS-	staining, positive staining.	structural proteins during the
	Polyacrylamide gel.		assembly of the head of
	(Amylase, Lactate		bacteriophage T4. Nature. 1970
	dehydrogenase)		Aug 15; 227(5259):680-5.
			Raymond S, Weintraub L.
			Acrylamide gel as a supporting
			medium for zone electrophoresis.
			Science. 1959 Sep 18;
			130(3377):711-711.
6.	Immobilization of	Increasing the industrial	Methods in Biotechnology, Vol 1,
	enzyme by gel	significance of enzyme by	Immobilization of Enzymes and
	entrapment and cross	enhancing its reusability	Cells Edited by Bickerstaff G. F.,
	linking method	and shelf life	Humana Press, Inc, Totowa, N. J.
			2006.
			Meena K, Raja TK.
			Immobilization of yeast invertase
			by gel entrapment. Indian Journal
			of Biotechnology. 2004; 3: 606-
			608.
7.*	Study on enzyme	Understand the role of	Strelow J, Dewe W, Iversen PW,
	inhibition.	catalytic amino acid	Brooks HB, Radding JA, McGee
		residues in enzyme reaction	J, Weidner J. Mechanism of
		mechanism	Action assays for Enzymes. 2012.
			Eisenthal R, Danson MJ, editors.
			Enzyme assays: a practical
			approach. Practical Approach
			(Paperback); 2002.

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

COURSE: PERSONALITY AND SKILL DEVELOPMENT COURSE CODE: HU 501 MARKS: 50

L	Т	P	Hr	С
2	0	0	2	2

OBJECTIVE:

The objective of the course is about personality development with regard to the different behavioral dimensions that have far reaching significance in the direction of organizational effectiveness and their holistic development.

COURSE OUTCOME:

On completion of the course students will

- Have better presentation skills
- Attain Leadership skills
- Be able to better manage stress
- Have improved employability skills

PREREQUISITES:

Students should have completed the course on Communication skills HU101

Sr. No	Торіс	Description	Hrs
1	Introduction to personality development skills.	Meaning, definition and importance of holistic personality. Habit, behavior and their roles in Personality Development.	3
2	Self-management and analysis	Self-evaluation: SWOT analysis Importance of self-confidence and self esteem Time management. Attitude, etiquette and ego.	4
3	Stress Management	Causes and impact of stress, Management of stress. General Adaptation Syndrome	4
4	Leadership skills: assessment and styles	Role of leader: Categories of leaders: entrepreneurial, administrative and political Leadership styles: autocratic, democratic and laissez-faire. Group Discussions	5
5	Motivation	Relevance and types of motivation: self- talk, intrinsic motivation, extrinsic motivation Analysis of motivation	5
6	Goal setting	SMART goals: Specific, Measurable, Agreed upon, Realistic and Time-based. Planning & Goal setting Types of goals: short and long term.	4

7	Presentation Skills	Preparing presentation: Layout, Structure,	(DEEMED UNIVERSITY)
		contents and logical sequence of ideas	
		Delivering of presentation: Language,	
		Speed, Audibility, Voice modulation, Use	
		of pauses, Body posture, Facial Expression,	
		Eye contact with audience and Confidence	
Total N	Number of lectures		30

METHODOLOGY:

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total 50		
Total		50

BOOKS RECOMMENDED:

- 1. Personal Development, Steven R. Coveys, Publisher: Franklin Covey on Brilliance Audio; Unabridged edition (2014).
- 2. Personality Development and soft skills, Author, Barun K. Mitra, Publisher: Oxford University Press, 2nd Edition (2013).
- 3. Communication Skills and Personality Development. Author: J. R. Kadam, V. G. Patil, S.A.Dhenge, Publisher: Scientific publishers (India) (2018).
- 4. Essentials of Management, Harold Koontz and Heinz Weihrich, Tata McGraw-Hill, 6th Edition (2006).
- 5. Management: Tasks, Responsibilities, Peter F. Drucker, Harper Collins Publishers (2009).

COURSE: R ProgrammingCOURSE CODE: CT 501LTPHrCMARKS: 501011

Course Outcomes :

- Get to know how to do programs in R
- Get to know how to do data analysis in R
- Biological analysis using R

Prerequisite –

- In depth knowledge of C programming is required
- Basic understanding of Statistics & Data Structure
- Basic knowledge of Molecular Biology, Genetics, Biochemistry and Computer aided drug designing.

Course Description

Sr. No.	Торіс	Description	Hours
1	Introduction and	What is R?	2
	basics of R	History of R	
		Features of R	
		Uses of R	
		Applications of R	
		Data types	
		Escape Sequences	
		Variables	
		Keywords	
		Operators	
		Control statements and	
		loops	
2	Data Structures	Vectors	2
		Lists	
		Arrays	
		Matrix	
		Data Frames	
		Factors	
3	R Graphics	R Plot, R Line, R Pie Chart,	2
		R Bars	
4	Data and File	Reading and writing data	2
	Handling	R CSV file	
	_	R Excel file	
		R XML file	
		R Database	
5	R Statistics	R Mean, Median & Mode	5
		R Linear Regression	
		R Normal Distribution	
		R Binomial Distribution	

Lectures	5			
		Total	15	
	Biotechnology	solve biological problems		
6	R applications in	Use various R functions to	2]
		Nearest neighbour		
		Neural network		
		Support with the machine		
		R Chi Square Test		
		R Random Forest		
		R Time Series Analysis		

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EXAMINATION SCHEME (THEORY)			
Examination	Duration	Marks	
Internal		20	
End Semester Exam		30	
Total		50	

References-

- 1. The Book of R: A first Course in Programming and Statistics by Tilman M. Davies
- 2. R for Data Science by Hadley Wickham and Garrett Gorlemun
- 3. https://bioinformatics-training.github.io/intro-machine-learning-2019
- 4. www.tutorialspoint.com
- 5. www.javatpoint.com
- 6. www.guru99.com

COURSE: BIOPHARMACEUTICALS (Elective I)

COURSE CODE: BT 505 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE OF THE COURSE:

To create general understanding regarding basic knowledge of Biopharmaceuticals to familiarize the student with the production techniques, mode of action and therapeutic uses of Biopharmaceuticals.

COURSE OUTCOME:

At the end of the course, the students will have:

- Sufficient understanding of the current status of biopharmaceuticals in the pharma industry
- Knowledge on biopharmaceutical formulation techniques.
- Ability to demonstrate the significance of therapeutic agents like hormones, blood products and enzymes in pharmaceuticals
- Understanding of the biological effects and production of monoclonal antibodies, vaccines and biosimilars

PREREQUISITES

Students should know the basics of Microbiology, Biochemistry

Sr. No.	Topics	Detailed syllabus	No. of Lectures
1	Overview	Introduction and current status of Biopharmaceuticals in the pharmaceutical industry. How are Biopharmaceuticals different from Pharmaceutical products	03
2	The drug manufacturing process	Good Manufacturing Practices: Cleanroom, cleaning, documentation and sanitation (CDS), preparation of purified water and water for injection for the biopharmaceutical processing, Source of Biopharmaceuticals: <i>E.coli</i> as a source of recombinant, transgenic animals, and transgenic plants Analysis of final biopharmaceutical products: Detection of protein based product impurities, pyrogen detection, endotoxin assay, and immunological approaches	09
3	Hormones of therapeutically interest	Insulin, Insulin receptors, production of human insulin by rDNA technology, insulin formulation, and Glucagon	07
4	Blood products and therapeutic enzymes	Anticoagulants: Hirudin, Vitamin K, and Antimetabolites, Oxygen carrying blood substitutes: Albumin, Dextran, and Gelatin	06
5	Growth factors and wound healing	Insulin growth factor (IGF), Epidermal growth factor (EGF), and Platelet derived growth factor (PDGF), Wound healing process	07
6	Vaccines and Nucleic acids therapeutics	Vaccines: Types of vaccines, peptide vaccine, and vaccine vectors Basic approach to gene therapy: Types of gene	09

Total Lectures	40
therapy vectors Antisense technology: Uses, advantages, and limitations	

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

1. Biopharmaceuticals- Biochemistry and Biotechnology. Second Ed. Garry Walsh. John Wiley and Sons. 2003

PRACTICALS IN BIOPHARMACEUTICALS (2 Hrs. Per Week) MARKS: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Chemical assay for estimation of penicillin /streptomycin/tetracycline Antibiotics	To know the simple assay for antibiotic determination. To understand chemical composition and reactivity. To know the mode of	1. Kayser O, Warzecha H. Pharmaceutical biotechnology: drug discovery and clinical applications. John Wiley & Sons; 2012.
2	Bioassay to determine the antifungal activity of standard Aureofungin/ clotrimazole/ fluconazole/	action of antibiotics To know the simple assay for determination of antifungal compounds. To know the mode of action of antifungal compounds. To understand the structure of antibiotic	 Beale JM, Block J, Hill R. Organic medicinal and pharmaceutical chemistry. Philadelphia: Lippincott Williams & Wilkins; 2010. Foye WO. Foye's Principles of Medicinal Chemistry. Lemke TL,
3	Bioassay to determine the antibacterial activity of standard penicillin, streptomycin, tetracycline antibiotics by standard disc/well method	To know the role of bioassay in pharmaceuticals. To understand the disc and well diffusion assay Method	 Williams DA, editors. Lippincott Williams & Wilkins; 2008 4. Lachman, Leon et al. "The Theory and Practice of Industrial
4	Sterility testing of commercial injectable such as saline water, eye drops or ear drops	To determine the quality of pharma products with respect to microbial contamination. To understand the commercial significance of sterility testing in biopharmaceutical Products	 Pharmacy", 3rd Edition, Varghese Publishing House, 1986. 5. Godkar PB, Godkar DP, Textbook of Medical Laboratory Technology Bhalani Publishing House, 2014 by 6. Husain A, Practical
5	Extraction and detection of antimicrobial compounds from plant origin	To understand different method of extraction. To know antimicrobial compounds from plant	Pharmaceutical Analytical Techniques, Darshan Publishers, 2015
		origin. To know the diffusion of antibiotic and factors affecting it	7. Indian Pharmacopeia,2007, Volume 1,Published by The IndianPharmacopeia
6	•	To estimate the concentration of glucose in samples. The correlation of glucose concentration with different clinical conditions	Commission, Ghaziabad; Tests for pyrogens
7	Determination of endotoxin in the therapeutic formulation (WFI, gentamycin injection	To know endotoxin of bacterial origin, its structure and their role.	

	1	1	1
	ampicillin injections) by using	To learn Significance of	
	LAL test reagent	LAL test at commercial	
		Level	
8	Determination of SGPT/SGOT	To estimate the	
	activity in serum / plasma	concentration of SGOT	
	sample by chemical method	and SGPT in samples.	
		To learn importance of	
		SGPT and SGOT activity	
		with functional test	
		The correlation of glucose	
		concentration with	
		different clinical conditions	
9	LIMIT test for chloride,	To learn threshold level of	
-	sulphates, iron and heavy	ions in the pharmaceutical	
	metals in pharmaceutical	products.	
	products.	To understand the	
	r	significance of LIMIT test	
		at commercial level	
10	One day industrial visit to a	To understand the	
10	pharmaceutical company	commercial production of	
		biopharmaceutical	
		Products	
		FIGURES	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

NAME OF THE COURSE: CLINICAL RESEARCH (Elective I)

COURSE CODE: BT 506
MARKS: 150

OBJECTIVE

The objective of the course is to familiarize the students about higher educational areas after their graduation. At the end of the course students should be able to understand various disciplines in the field of clinical research which will also help them in selecting their dissertation topics in final year of their course.

COURSE OUTCOME:

On completion of the course students will:

- Understand the different steps that are required to be carried out for drug approval
- Understand the various phases of the clinical trial
- Be able to understand the various ethical requirements as well as ethical guidelines related to carrying out a clinical trial
- Observe the working of a trial in a CRO to get a better understanding of clinical trials
- Be updated to the current situation of the clinical research in India and future for clinical research on topics that are relevant from Indian perspective

PREREQUISITE:

Students should be familiar with biology and basic statistics to take up this course.

Sr.	Торіс	Detailed syllabus	No. of
No.			Lectures
1.	Introduction to	History & background of origin of clinical research;	3
	clinical trials	Drug development process and phases of clinical trials	
		(CT); Terminology in clinical research	
2.	Introduction to	Ethics in clinical research; Introduction to different	5
	different clinical	clinical guidelines (Schedule Y, DGCI,ICMR, ICH-	
	guidelines and ethics	GCP); Principles of ICH-GCP, US Food and Drug	
		Administration (USFDA); Medicines and Healthcare	
		Products Regulatory Agency (MHRA): Overview,	
		European Agency for Evaluation of Medicinal Products	
		(EMEA), Ethical guidelines for biomedical research on	
		human participants (as given in ICMR); Indian Good	
		Clinical Practices; Clinical trial application	
		requirements (IND,NDA,ANDA, orphan drugs);	
		Informed consent; Ethical committee (EC)-constitution;	
		Roles & responsibilities; Communication with EC	
3.	Design of the study	Planning a protocol: an overview; Selection of	8
		questions, Defining the study population; Types of	
		study design; Response variables and measurement;	
		Bias and elimination of bias - Types and mechanics of	
		randomization; Types of blinding in trials and methods	
		of protecting blind design	
4.	Initiation of	Sample size calculation; Recruiting participants;	3
	recruitment	Baseline assessment	

COURSE DESCRIPTION

L	Т	Р	Hr	С
3	0	2	5	4

5.	Clinical data		(DEEMED UNIVERSITY)
э.		Case report form (CRF); CRF Tracking, Data entry	/
	monitoring and	processing; Data validation and discrepancy	
	analysis	management; Quality monitoring of the data;	
		Minimizing poor quality data; Data analysis; Competing	
		events; Co-variance adjustment; Subgroup analysis;	
		Cut-points; Meta-analysis	
6.	Impact analysis	Adverse effect; Health related quality of life; adherence	5
		and survival analysis	
7.	Termination and	Closeout- Termination of the trial; Procedure of	9
	reporting	termination; Post study follow up; Evaluation of the	
		trial; Reporting a trial; Interpretation and publication	
		bias; Comparing results between studies, clinical	
		implication of the findings, Multicenter trials,	
		Globalization of trials, Drug approval- Indian scenario	
		and US FDA, EU	
8.	Other components of	Medical writing; Pharmacoepidemiology;	5
	clinical research	Pharmacovigilance; B.A./B.E. Studies; Overview of the	
		on-going clinical trials in India	
		Total	45

METHODOLOGY

The course will be covered through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED:

- 1. Fundamentals of clinical trials, by Friedman, LM; Furberg, CD; Demets, DL; 2015. ISBN 978-1-4419-1585-6, Publisher Springer
- 2. Clinical Trials Handbook: Design and Conduct, Cutis L. Meinert, ISBN 978-1-1182-1846-4, Publisher Wiley

PRACTICAL IN CLINICAL RESEARCH

(2 Hrs. Per Week) MARKS: 50

Sr.	Name of the	Learning objective	Literature/ Weblinks for	Hrs
No.	experiment		reference and videos	
1.	Drafting of Informed Consent Form/Assent	To know about the patient consent form and ways to exchange information with patients and	https://cdsco.gov.in/opencms/ope ncms/en/Home/	2
	Form-	medico-legal requirements	https://www.who.int/ethics/review- committee/informed_consent/en/	
2.	Drafting of CRF	To understand the documentation for patient recruit	Bellary S, Krishnankutty B, Latha MS. Basics of case report form designing in clinical research. <i>Perspect Clin Res</i> . 2014;5(4):159-166. doi:10.4103/2229-3485.140555	2
3.	Visit to clinical research setting (Industrial/Hospital based)	To understand the set up of a clinical research unit and its working.	Fundamentals of clinical trials	4

BOOK RECOMMENDATION:

- 1. Fundamentals of clinical trials, by Friedman, LM; Furberg, CD; Demets, DL; 2015. ISBN 978-1-4419-1585-6, Publisher Springer
- 2. Bellary S, Krishnankutty B, Latha MS. Basics of case report form designing in clinical research. *Perspect Clin Res.* 2014;5(4):159-166. doi:10.4103/2229-3485.140555

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

NAME OF THE COURSE: Human Diseases and Pathobiology

COURSE CODE: BT 507	LT P Hr C
MARKS: 150	3 0 2 5 4

OBJECTIVE

The objective of the course is to develop an understanding regarding various human diseases. The course covers details of various infectious and non-infectious diseases.

COURSE OUTCOME:

On completion of the course would enable the student to understand various human diseases.

PREREQUISITES

Since the course is advance in nature knowledge in microbiology, human anatomy and physiology is required.

Sr. No.	Topics	Topics Detailed syllabus	
1.	Introduction to nature and investigation of diseases	Introduction to health and disease Characteristics and features of diseases Classification of disease Epidemiology Investigating diseases: Types of pathology laboratories, role and evaluation of hospital laboratory tests.	7
2.	Pathogens and virulence	Introduction to pathogens, parasites and types of infection Types of pathogens : Bacteria, Fungi, Helminths, Prions, Protozoans and Viruses Types and effects of microbial virulence factors (offensive and defensive).	6
3.	Infectious disease and treatments	 Bacterial infections of skin, eye, ear, central nervous system, respiratory system urogenital system and gastrointestinal system Viral infections of central nervous system, respiratory system, urogenital system and gastrointestinal system Fungal infections of skin and respiratory system Systemic infections, Sepsis, Prevention and treatment of infections (with antibiotics, antiviral combination therapy and surgery) 	6
4.	Disorders of immune system	Introduction to the defense system and types of immunodeficiency diseasesSigns, symptoms, diagnosis and treatments ofi) Primary immunodeficiency diseases : SCID, CVID, Transient hypogammaglobulinemia, DiGeorge Anomaly and Wiskott-Aldrich Syndromeii) Autoimmune Disorders: Rheumatoid	6

		Total No. of Lectures	46
		disease management	
9.	Disease surveillance	History and importance of surveillance in	2
	aging	disorders eg: Parkinson disorder, Alzheimer disorder and Progeria	
8.	Disorders linked to	Introduction to causes of aging, age-related	3
		Signs, symptoms, diagnosis and treatments of dilated congestive cardiomyopathies, endocarditis and atherosclerosis	
7.	Disorders of the cardiovascular system	Introduction to the circulatory system and common disorders eg: hypertension, cardiac failure and angina	5
	system	Signs, symptoms, diagnosis and treatments of Cholelithiasis, Hepatitis , Hernia, and Crohn disease	
6.	Disorders of digestive system	Introduction to GIT and common disorders eg: Gastritis, Ulcers	5
		ii) Female: Amenorrhea and PCOSCauses and treatment of infertility in men and women	
		Cushing syndrome d) Pancreas: Diabetes Mellitus e) Reproductive hormones : i) Male: Hypogonadism, Gynecomastia	
		b) Thyroid Glands: Hypothyroidism and Hyperthyroidismc) Adrenal Glands: Addison disorder and	
		Signs, symptoms, diagnosis and treatments of disorders linked to a) Growth hormones : Acromegaly, Gigantism	
5.	Disorders of the endocrine system	Introduction to endocrine system and its disorders	6
		iii) Immunological Hypersentivities: Type I to IV	
		Arthritis, Systemic Lupus Erythematosus and Myasthenia Gravis	Dr. D.Y. PATIL VIDYAPEETH, PUNE

METHODOLOGY

The course would be covered through lectures, group discussions, teaching aids and would be supported by practical.

EVALUATION SCHEME (THEORY)

	•	4.	
Exan	າເກສ	ation	

Marks

I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

RECOMMENDED BOOKS

1. Biology of Disease, by Nessar Ahmed, Maureen Dawson, Chris Smith, Ed Wood, **Publisher:** Taylor & Francis; **ISBN-13:** 978-0748772100

2. Gordis, L. (2004). *Epidemiology*. Third edition. Philadelphia: Elsevier Saunders. (The second edition is also acceptable.)

PRACTICAL IN Human Diseases and Pathobiology MARKS: 50

(2 Hrs. Per Week)

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Introduction to pathogens/parasites (e.g., bacteria, protozoans, arthropods etc.) including disease causing stages in their life cycle using permanent slide preparations/images.	Familiarize with various pathogens/parasites and understanding the relationship between pathogen-disease relationships.	https://www.cdc.gov/
2.	Identification of microbes\$ using indicator media (e.g., Blood Agar).	Understand how indicator media are used to broadly predict the presence of a specific microbe.	Microbiology–A Laboratory Manual. 7th ed Cappuccino. J, Sherman. N Pearson Education Publishing, Inc: 2005.
3.	Common and rare skin diseases/disorders in a population (based on the cases in the outpatient unit of Department of Dermatology, DPU Medical College and Hospital)#.	Understand the clinical presentation, pathogenesis, diagnosis and treatment of skin diseases/disorders in a population.	 a) https://medlineplus.gov/magazine /issues/fall08/articles/fall08pg22- 25.html b) http://www.healthline.com/health/ skin-disorders c) Literature procured from the Department of Dermatology, DPU Medical College and Hospital.
4.	Metabolic and immune disorders in a population (based on the cases in the outpatient unit of Departments of Pathology and General Medicine, DPU Medical College and Hospital)#.	Understand the clinical presentation, pathogenesis, diagnosis and treatment of metabolic/immune disorders	 a) https://medlineplus.gov/metabolic disorders.html b) https://medlineplus.gov/immunes ystemanddisorders.html c) Literature procured from the Departments of Pathology and General Medicine, DPU Medical College and Hospital.
5.	Sexually transmitted diseases in a population (based on the cases in the outpatient unit of Department of Venereology, DPU Medical College and Hospital)#.	Understand the clinical presentation, pathogenesis, diagnosis and treatment of sexually transmitted diseases.	a) https://medlineplus.gov/sexuallytr ansmitteddiseases.html b) Literature procured from the Department of Venereology, DPU Medical College and Hospital.
6.	Clinical methods (eg: X-ray, CT scan etc.) used in diagnosis of common diseases (at the Departments of Radio-diagnosis, Pathology and Microbiology, DPU Medical College and Hospital)#.	Familiarize with the common clinical diagnostic methods.	 a) http://www.who.int/topics/diagno stic_techniques_procedures/en/ b) Literature procured from the Departments of Radio-diagnosis, Pathology and Microbiology, DPU Medical College and Hospital.

			(DEEMED UNIVERSITY)
7.	Study the implications of viral	Familiarize with the	a)
	infections in the context of	biology of viruses,	https://medlineplus.gov/viralinfec
	biomedical research (by visiting a	diseases caused and	tions.html
	research organization) #.	current research	b) Literature procured from the
		landscape.	organization.
		-	

\$ Non-pathogenic strains would be used for the experiment.

Students are to take note on the practical carried out and the observations made during visit to the Medical College and Hospital or other research institutes/centres. Practical examination would involve questions based on what has been studied/demonstrated in these visits.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	SEMESTER VI					
Course Code	Course CodeCourse NameLTPHrC					Cr
BT 601	Food Biotechnology	3	0	2	5	4
BT 602	Marine Biotechnology	2	0	2	4	3
BT 603	Basic Pharmacology & Toxicology	2	0	0	2	2
BT 604	Genomics, Transcriptomics and Proteomics	3	1	4	8	6
BI 601	Artificial Intelligence	1	0	0	1	1
BT 605/606	Elective II	3	0	2	5	4
	Total	14	1	10	25	20
	Elective II (Perl & Bioperl / Structural	Biology)			

NAME OF THE COURSE: FOOD BIOTECHNOLOGY COURSE CODE: BT 601 MARKS: 150

L	Т	Р	Hr	С
3	0	2	5	4

OBJECTIVE:

The objective of the course is to familiarize the students with quality process used in food industry and basic concept in Food Biotechnology

COURSE OUTCOME:

On completion of the course, the students will be able to:

- Identify and calculate the nutritional value of food products.
- Distinguish the beneficial microorganisms from non-beneficial one in food products.
- Demonstrate the knowledge of food biotechnology in modifying the food products by improving the nutritional value
- Demonstrate different types of biotechnological methods to improve the value of different food and new techniques used in Food Biotechnology.

PREREQUISITES:

Since the course is application oriented, student must know about the basics of Biomolecules, Microbiology and Fermentation technology.

Sr No	Торіс	Description	No of Lectures
1	Introduction to Food Biotechnology	Activities of Food Biotechnologist, Career in Food Biotechnology.	2
2	Nutritive aspects of Food Constituents	Food and Energy, Role of Carbohydrate, Proteins, and Fats in Nutrition. Bioavailability of Nutrients, Role of Vitamins, Minerals, Fiber and Water. Stability of Nutrients	6
3	Biotechnology in Food Processing	Unit Operation in Food Processing Quality Factors in Food Food deterioration Food Preservation and its Principle Rheology of Food in general.	10
4	Role of Microbes in Food and Food Products	Fermentation and other uses of Microorganism, Single Cell Proteins. Production of Pickle, Kefir, Wine, Beer, Bread, Monosodium Glutamate (MSG). Production of Cheese and Types of Cheese. Use of enzymes in food industry - Proteases, Glucose oxidase, Amylase.	12
5	Molecular cloning in Food Industry and Other technique to develop new plant varieties	Antisense RNA technology (Flavr Savr Tomatoes), Enviro Pig, Daisy Cow, Golden Rice, BT Brinjal. Agrobacterium mediated gene transformation, Somaclonal Variation, Gametoclonal Variation. Ethical Issues related to use of Genetically modified foods.	10

COURSE DESCRIPTION

6	Food Laws and Standards	Prevention of Food Adulteration Act, FSSAI and its function, International Food Standards- FAO, WHO and CODEX Alimentarius. Hazard Analysis Critical Control Point (HACCP). Food Labeling and Nutrition Labeling. Quality Control in Food.	5
Total Number of Lectures			45

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

Evaluation Scheme (Theory)

Examination	Duration	Marks
I Internal	60mins	20
II Internal	45Mins	15
Teachers assessment	-	05
End Semester Exam	2hrs 30mins	60
Total		100

BOOKS RECOMMENDED:

- 1. Food Science by Norman Potter, Joseph Hotchkiss, Fifth Edition, 2007
- 2. Food Microbiology by William Frazier and Dennis Westhoff, 4th Edition, 2010
- 3. Modern Food Microbiology by James M Jay, 4th Edition, 2005
- 4. Food Biotechnology, edited by Dietrich Knorr, 2007

Sr No	Experiment	References
1	Determination of quality of milk by MBRT test.	
2	To Detect the number of bacteria in milk or	Food Microbiology by Soman J P
	any given sample by Breed Count or Direct Microscopic Count (DMC).	First Edition, 2008
		Practical in Microbiology by R C
		Dubey, D K Maheshwari, First
		Edition 2005
3	To check the efficiency of food	Food Microbiology by Soman J P
	preservatives.	First Edition, 2008
4	Estimation of Percentage of lactic acid	Practical in Microbiology by R C
	(Titrable acidity) in given milk and milk	Dubey, D K Maheshwari, First
	product sample using titration method.	Edition 2005
5	Detection of pathogenic bacteria from food	Food Microbiology by Soman J P
	sample using selective media.	First Edition, 2008
6	To Detect the number of bacteria in food	Food Microbiology by Soman J P
	sample by Standard Plate Count (SPC) Method.	First Edition, 2008
		Practical in Microbiology by R C
		Dubey, D K Maheshwari, First
		Edition 2005
7	To make/bake bread using Saccharomyces	Practical in Microbiology by R C
	cerevisiae (Baker's yeast).	Dubey, D K Maheshwari, First
		Edition 2005
8	To make Cheese in Laboratory	Practical in Microbiology by R C
		Dubey, D K Maheshwari, First
		Edition 2005

PRACTICAL IN FOOD BIOTECHNOLOGY (2 Hrs. per Week) MARKS: 50

PRACTICAL EVALUATION SCHEME:

Examination	Duration	Marks
Continuous Assessment		20
End semester Exam Viva & Spotting	2 hrs	30
Total		50

COURSE: MARINE BIOTECHNOLOGY COURSE CODE: BT 602 MARKS: 100

L T P Hr C 20 2 4 3

OBJECTIVE:

The objective of the course is to give an overview of marine environment and its living and nonliving resources. Further the utility of the resources for overall benefit of humans and other biota is also covered.

COURSE OUTCOME:

On the completion of the course, students will be able to,

- Demonstrate the methods to study the microbial biodiversity and role of microbes in the marine ecosystem
- Explain the marine natural products, their sources and their applications
- Culture algae for the production of various algal compounds and production of enzymes and antibiotics from marine microbes
- Explain the acts and laws related to conservation of marine life

PRE-REQUISITES:

Students are expected to have a basic understanding in Biology.

Course Description:

Sr. No	Topics	Detail syllabus	No. of lectures
1	Marine Science Fundamentals	 Bathymetry: Ocean basins, tectonics and sediments Marine biology and ecology: Biodiversity, benthos, food chain, non-cultivable life forms 	4
2	Marine Microbiology	 Methods for assessment of microbial life forms: sampling, identification, community structure analysis Role of Microbes in marine ecosystem: beneficial and harmful effects, interactions with other flora and fauna 	4
3	Marine resources- Bioprospecting	 Marine Natural Products: screening using advanced high- throughput systems, isolation and identification techniques using genomics, proteomics or transcriptomics approaches Bioactive compounds and Biomaterials: antibiotics, enzymes, alkaloids, biominerals, biocomposites, Biopolymers 	6

Dr. D.Y. PATIL VIDYA PEETH, PUNE (DEIMED UNITATION)

	Total		32
7	Marine Conservation	 Pollution in the marine environment: Causes Marine protection acts and laws: for conservation, 	2
6	Marine models of regenerative medicine	 Principles of organ regeneration: Xenopus and Zebrafish as models for regeneration Examples of marine biomaterials in regeneration 	3
5	Advanced technologies and products	 Transgenic fish: development and applications Probing technologies: biochemical, molecular, bioindicators Biosensors: role in marine environment 	5
4	Marine culture	 Aquaculture: Methods, ponds, cultivation systems, examples- Gastropod, Bivalve and Crustacean production Marine life poisoning: marine toxins Aquatic animal health management: diseases of commercial fishes, spoilage, control methods Broodstock development: Maintenance of important broodstock 	8

Methodology:

The course will be covered through lectures and laboratory practical's. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

Books Recommended:

- 1. Marine Biotechnology I, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005).
- 2. Marine Biotechnology II, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005).
- 3. Handbook of Marine Biotechnology, Kim, Se-Kwon (Ed.), Springer (2015).
- 4. Micro Algae: Biotechnology & Microbiology, E. W. Becker Cambridge University Press.
- 5. Aqua Culture An Introduction, Lee & Newman, Interstate Publishers Biotechnology an Introduction, Susan R. Barnum, Vikas Publishing House

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total 50		
Total		50

PRACTICAL IN MARINE BIOTECHNOLOGY (2 Hrs.)

MARKS: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Identification of phytoplanktons and zooplanktons using permanent slides	Introduce the students with different types of marine organisms.	Lab Manual Introduction to Marine Biology, (4 th Edition) by <u>George Karleskint, Richard</u> <u>Turner, James Small</u> (Brooks Scole Publication)
2	Isolation and identification of important marine yeast/fungi/bacteria	Learn the techniques of isolation of marine yeast/fungi/bacteria	Isolation and identification of important marine yeast/fungi/bacteria. <i>Indian</i> <i>Journal of Geo Marine Science</i> , 2011; 40(3), 391-397.
3	Enumeration of marine microbes using fluorescence, dark field and phase contrast microscopy	Identify number and different types of microbes from marine system	Lab Manual Introduction to Marine Biology, (4 th Edition) by <u>George Karleskint, Richard</u> <u>Turner, James Small</u> (Brooks Scole Publication)
4	Study of microbial diversity in a marine system using metagenomics and community analysis	Learn the techniques for rapid identification of marine microbial system.	16S rDNA-Based Metagenomic Analysis of Bacterial Diversity Associated With Two Populations of the Kleptoplastic Sea Slug <i>Elysia chlorotica</i> and Its Algal Prey <i>Vaucheria litorea</i> . 2012; Biol. Bull. 223: 138–154.
5	Function or molecular screening for potential bioactive compounds from marine bacteria (enzyme, polysaccharide/biofilm, biosurfactant or bioemulsifier)	Identify bioactive compounds from marine organisms and their applications	Lab Manual Introduction to Marine Biology, (4 th Edition) by <u>George Karleskint, Richard</u> <u>Turner, James Small</u> (Brooks Scole Publication)
6	Bioindicators for detection of marine pollutants	Use of organisms to detect the marine pollution.	Bioindicators: the natural indicator of environmental pollution. <i>Frontiers in Life</i> <i>Science</i> , 9:2, 110-118
7	Study of quality control parameters for edible marine/fresh water fishes using molecular diagnostic techniques	Quality control measures for edible marine/fresh water food	Comparison of selected methods of assessing freshness quality and remaining storage life of iced gilthead sea bream. <i>Food</i> <i>Research International</i> 36 (2003) 551–560
8	Optimization of different media for growth of algae	Preparation of media and its screening for optimum growth of algae	Culturing Algae (2 nd Edition) by Daniel E. James. Carolina Biological Supply Company.

9	Algal Cell Culture and bio- fuel production from algal biomass	Learn the production of bio-fuel from algae	Micro Algae : Biotechnology & Microbiology, E. W. Becker Cambridge University Press
10	Preparation of different types of ponds and aquaponics chambers used in aquaculture	To learn preparation of ponds and aquaponics chambers for growing marine organisms	http://www.fao.org/3/a- i4021e/index.html
11	Visit to Marine Research Institute.	To learn the research as well as institutional activities carried out by institute	_

PRACTICAL EVALUATION SCHEME:

Examination	Duration	Marks
Continuous Assessment		20
End semester Exam Viva & Spotting	2 hrs	30
Total		50

COURSE: Basic Pharmacology & Toxicology COURSE CODE: BT 603 MARKS: 50

L T P Hr C 2 0 0 2 2

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic aspects of Pharmacology and toxicology.

LEARNING OUTCOME:

- Know about the types of drugs and their effective and lethal dosage.
- Understand the mechanism of action of pharmaceutical drugs on organs and their effects.
- Demonstrate experiments for screening of potential drugs

PREREQUISITES:

Students should studied chemistry and cell biology

Sr.	Торіс	Description	Hrs
No			
1	Introduction to pharmacology and	1. History and scope	3
	toxicology	2. Definitions and terms	
2	Dose-effect relationships	1. Assumptions in deriving the Dose: Response relationship	6
		2. Individual, graded and quantal	
		Dose: Response relationship	
		3 . Evaluating Dose: Response	
		relationship: Therapeutic, Lethal	
		effective dosage.	
		4. Dose–Response Assessment:	
		NOAEL	
3	Pharmacokinetic	1. Route and site of exposure: oral,	4
		dermal, inhalation and injection	
		2. Absorption	
		3. Distribution	
		4. Metabolism	
4		5. Excretion	6
4	Biotransformation of Xenobiotics	1. Biotransformation versus metabolism	6
		2. Phase I and Phase II enzymes and	
		reactions	
5	Interaction of chemicals	1. Potentiation,	3
		2. Agonism and Antagonism,	
		3. Synergistic	
6	Toxicity testing	1. <i>In vitro</i> and <i>in vivo</i> tests	7
		Acute, sub-chronic, chronic,	
		Mutagenicity and carcinogenicity	
		2. Special Tests	
7	Response to different chemicals	1. Receptor classification	6
		2. Drug receptor interaction	
		Ligand-gated ion channel,	
		G-protein coupled receptors,	

COURSE DESCRIPTION

32

Total Number of lectures

METHODOLOGY:

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal		20
II Internal		
End Semester Exam	1 hour 15 minutes	30
Total		50

BOOKS RECOMMENDED:

1) Toxicology: The Basic Science of Poisons, Casarett and Doull's: Amdur, Mary O. PhD; Doull, John PhD, MD; Klaassen, Curtis D. PhD MC Graw Hill Publisher 7th Edition.

Kinase and enzyme linked and

nuclear receptors.

- 2) A text book of toxicology Ernest Hodgson A JOHN WILEY & SONS, INC., PUBLICATION, 4th edition
- 3) Lippincott's Illustrated Reviews: Pharmacology, 5th edition, Richard A. Harvey. Publisher-Lippincott Williams & Wilkins, a Wolters Kluwer Business.

COURSE: Genomics Transcriptomics & Proteomics COURSE CODE: BT 604 Total marks: 200

LT P Hr C 3 1 4 8 6

Course Objectives:

The recent proliferation of genomic data has transformed biology, making previously laborious and expensive experiments easier and cheaper, enabling new avenues of inquiry, andfundamentally altering our understanding of biology and medicine. This course will introduce to the questions that can be asked and answered with genomic data, and to the computational tools available to analyze that data. **Learning outcome:**

At the end of the course students will have,

- Practical and theoretical skills concerning classical as well as new large-scale and technologydriven approaches in molecular biology
- Ability to discuss and evaluate when and how these methods are best put into use.
- Understanding to describe and differentiate between large-scale analyses at different levels, including genomics, transcriptomics, proteomics, metabolomics, metagenomics and systems biology.

Prerequisite: Basic knowledge of molecular biology, Recombinant DNA technology and Bioinformatics is required.

S.No.	Units	Details	No of lectures
1.	Genomics	Structure and organization of prokaryotic and eukaryotic genomes- nuclear, mitochondrial and chloroplast genomes. Databases different types DNA databases, Tools for finding genes and regulatory regions.	4
2.	Transcriptomics	Concepts of transcriptomics and its scope.	2
		Micro (mi) RNA biogenesis and its role in regulation of gene expression.	1
		Tools for analyzing gene expression: Serial Analysis of gene expression (SAGE), massively parallel signature sequencing (MPSS).	4
3.	Microarray technique in Genomics and Transcriptomics	Basic principles and design of cDNA and oligonucleotide arrays, DNA microarray. Basic steps involved in designing a microarray experiment.	3
		Types of microarray based on its applications:- Expression arrays, Comparative Genomic Hybridization (CGH) arrays, Re-sequencing arrays.	3

			Dr. D.Y. PATIL V (DEEMED
		Different microarray platforms (Affymetrix, Agilent etc.); Tools used to normalize microarray Data.	1
		Microarray databases – NCBI; GEO (Gene Expression Omnibus), Array Express (EBI);	2
		Functional Analysis: Gene Ontology functional enrichment tools, Pathway analysis (KEGG Database)	3
4.	Sequencing technology in Genomics and transcriptomics	Next Generation sequencing (NGS): Introduction to NGS, overview and comparison of different Sequencing Platform (Illumina, 454 (Roche), SOLiD (Life technology), Specific Biosciences, Ion Torrent, Nanopore, PacBio.	4
		Types of NGS:DNA-sequencing(Wholegenome sequencing), exome sequencing, Deepsequencing,ChIP sequencing, RNA-sequencing(Whole transcriptomesequencing, WTS).	2
5.	Proteomics:	What is proteomics?; proteome complexity; Overview of protein structure-primary, secondary, tertiary and quaternary structure. , Clinical and biomedical applications of proteomics.	2
		Post translational Modifications (PTMs) : Different type of PTMs, Quantitative proteomics, clinical proteomics and disease biomarkers, mass spectral tissue imaging and profiling	3
		Bioinformatics tools in Proteomics : Protein database, Relationship between protein structure and function.Track emrging diseases and design new drugs	4
6.	Metabolomics	An overview, basic sample preparation strategies- extraction, derivatization. Workflow for lipidomics; Targeted Vs Untargeted metabolomics; development of targeted assays for small molecules, Metabolomic Data Analysis:Peak detection, retention time alignment; identification of molecular features and metabolites; Structural confirmation of metabolites. Software- Multiquant, MZmine, XCMS, MarkerView,	4
7.	Techniques in Protein and Metabolite	Identification and analysis of proteins by 2D PAGE, Mass spectrometry: ion source (MALDI, spray sources), analyzer (ToF,	3

Identification	quadrupole, quadruple ion trap) and detector for protein and metabolite analysis	
		45

Methodology:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

Books Recommended:

1. Principles of gene manipulation and Genomics Primrose S.B. and RM Twyman R.M.edi VII, 2006

2. Introduction to Genomics, Arthur M Lesk IInd edition Oxford University Press.2012

3. Introduction to Proteomics: Tools for New Biology Daniel C Liebler 1st Edition New York Humana Press,2001

4. Bioinformatics Sequence and Genome Analysis D.WMount Cold Spring Harbour Laboratories (CSHL) 2004

5. Discovering Genomics, Proteomics and Bioinformatic A. Malcolm Campbell, Laurie J. Heyer Benjamin Cummings; 2 edition (2006)

PRACTICAL IN GENEOMICS, TRANSCRIPTOMICS & PROTEOMICS (4 HRS) 100 MARKS

Sr. No.	Name of the	Learning objective	Literature/ Weblinks for reference and videos
	experiment	To study 0/ CC content and	reference and videos
1.	To determine genome	To study % GC content and	
	size & genome complexity by Cot	repetitive DNA in the given sample	
	curve analysis	sample	
2.	To perform zoo	To investigate coding & non	-
2.	blotting.	coding region s in the given zoo	
	blotting.	DNA samples.	Molecular Cloning Sambrook J &
3.	Analyze microarray &	To learn expression profiling by	Green MR 2016 V edition.CSHL
5.	RNA seq data	microarray & RNA seq in the	
	itt itt beg data	given genome/transcriptome	
		data.	
4.	To carry out	To learn quantification of DNA	microRNA.gene.quantification.inf
	quantitative real time		0
	PCR (qRT-PCR)		
5.	To Isolate and analyse	To learn gene regulation using	microRNA.gene.quantification.inf
	microRNA using	small RNA	0
	polyacrylamide gel or		
	PCR		
6.	To predict possible	Learn to locate target	http://www.targetscan.org/vert_71
	microRNAs targeting	microRNAs by genome wide	http://mirdb.org &
	the gene of interest.	scanning	http://www.exiqon.com/micrrna-
-			target- prediction.
7.	To Perform DNA	To know the DNA/RNA	www.nanopore technologies.com
	sequencing	sequence for finding gene of	
8.	To Perform 2D gel	interestTo resolve total set of proteins	Proteomics in Practice ; A guide to
0.	electrophoresis &	present ina mixture and identify	successful experiment design
	identification of the	proteins using mass	Reiner Westermeier, Tom Naven
	protein/peptide by	spectrometry	Hans-Rudolf Hopkin Edition II
	MALDI	spectrometry	Wiley -VCH
9.	To carry out DNA	To identify DNA DNA	www.ncbi.nlm.nih.gov/genbank/
	sequence analysis from	elements in the given DNA	
	the available profile.	sequence for structural	
	L L	/functional annotation	
10.	Genome Databases.	Ensemble, TIGR, Flymine	http://plantta.jcvi.org/
			www.flymine.org/
			www.ncbi.nlm.nih.gov/genbank/
			https://www.ebi.ac.uk/embl/
			www.ddbj.nig.ac.jp/

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

COURSE: ARTIFICIAL INTELLIGENCE COURSE CODE: BI 601 MARKS: 50

LT P Hr C 10011

COURSE OBJECTIVE:

- This course introduces the concepts and state-of-the-art research in bioinformatics, data mining and AI especially for medical application
- To understand the various characteristics of Intelligent agents
- To learn the different search strategies in AI
- To learn to represent knowledge in solving AI problems
- To understand the different ways of designing software agents
- To know about the various applications of AI

LEARNING OUTCOME

Upon completion of the course, the learners will be able to:

- 1. Understand AI concepts used to develop solutions that mimic human like thought process on deterministic machines for real-world problems.
- 2. Analyze and evaluate whether a problem can be solved using AI techniques and analyze the same using basic concepts of AI.
- 3. Understand the fundamental concepts of Neural Networks, different neural network architectures, algorithms, applications and their limitations
- 4. Analyze biological sequences and score matrices with respect to data processing.
- 5. Implement data mining algorithms on microarray, gene expression, feature selection for proteomic and genomic data.
- 6. Apply AI in medical field for development of contributive solutions.
- 7. Investigate state-of-the-art research and developments in bioinformation

Sr.	Topics	Detail syllabus	No.	of
No.			Lectures	
1	Introduction to AI	Introduction to AI, history and scope, Application areas,	2	
		Heuristic search, Algorithms		
2	Search Algorithms	Random search, Search with closed and open list, Depth	2	
		and Breadth first search		
3	Probabilistic	Probability, conditional probability, Bayes Rule,	1	
	Reasoning	Bayesian Networks		
4	Introduction to	Supervised & Unsupervised Learning	4	
	Machine Learning			
5	Introduction to	Neural networks, Computer Vision, Natural Language	3	
	Deep Learning	Processing		
6	Application of AI	Case Study 4		
	in Biological			
	Sciences			
	Total		16	

COURSE DESCRIPTION:

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EXAMINATION SCHEME (THEORY)				
Duration	Marks			
	20			
	30			
	50			
	/			

BOOKS RECOMMENDED:

- 1. J. Chen and S. Lonardi, Biological Data Mining, Chapman and Hall/CRC.
- 2. David Poole and Alan Mackworth, "Artificial Intelligence: Foundations for Computational Agents", Cambridge University Press 2010.
- 3. H. Zengyou, Data Mining for Bioinformatics Applications, Woodhead Publishing.
- 4. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw Hill.
- 5. S. Rastogi, N. Mendiratta and P. Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery, PHI.
- 6. Z. Ghosh, B. Mallick, Bioinformatics: Principles and Applications, Oxford University Press.
- 7. Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Prentice Hall
- 8. V. Buffalo, Bioinformatics Data Skills, O'Reilly Publishing.
- 9. Trivedi, M.C., "A Classical Approach to Artificial Intelligence", Khanna Publishing House, Delhi.
- 10. Saroj Kaushik, "Artificial Intelligence", Cengage Learning India, 2011

Elective II NAME OF THE COURSE: PERL & BIOPERL COURSE CODE: BT 605 MARKS: 150

LT P Hr C 3 0 2 5 4

OBJECTIVE

The objective of the course is to familiarize the Perl programming concepts

COURSE OUTCOME:

On completion of the course students will be able to:

- Understand the syntax and semantics of Perl programming
- Understand how to write programs and solve the real time problems
- Understand the similarities and difference between various programming languages
- Learn debugging techniques

PREREQUISITES

Students should be familiar with basic concepts of programming.

COURSE DESCRIPTION

Sr. No.	Topics	Detailed syllabus	No. of Lectures
1	Introduction and Installation	Introduction to Perl, Use of Perl in Bioinformatics , History, Availability, Support and Basic Concepts	03
2	Scalar Data	Data types, variables, scalars, Number, String, String functions, Comments, Escape sequences, Operators and operator types	04
3	Arrays and List Data	Introduction, Literal Representation, Variables Array Operators and Functions, Scalar and List context	04
4	Control Structure	If-else, switch, last, next, for loop, while loop and do-while loop	05
5	Hashes	Hash variables, Literal Representation of hashes, Hash function	05
6	Basic I/O	Opening & closing file, reading & writing file, different modes of file.	05
7	Regular Expressions	Use of regular expression, Patterns, Matching operators, Substitution, Split and join functions	05
8	Subroutines	System and user function, The local Operator,Variable length parameter list	
9	Advanced features in Perl.	Object oriented programming in Perl, Perl DBI, Advanced features in Perl, Advanced functions, operators files and directories System Interaction,	08

	Total Lectures	42
	Structures, Perl CGI, BioPerl Modules	
	Using Perl"s command line tool, References and	

METHODOLOGY

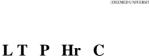
The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
First Internal	60 minutes	20
Second Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins by Andreas Baxevanis, Francis Ouellette, Wiley-Interscience, 2005.
- 2. Introduction to Bioinformatics by T. K. Attawood & D.J. Parry-smith, 8th reprint, Pearson education, 2004
- 3. Bioinformatics: Sequence and genome analysis by D. W. Mount, 2nd edition, CBS Publication, 2005.
- **4.** Fundamental Concepts of Bioinformatics by D. E. Krane and M. L. Raymer, Pearson Publication, 2006.
- 5. Bioinformatics: Tools & Applications by D. Edward, J. Stajich and D. Hansen, Springer, 2009.
- **6.** Bioinformatics: Databases, Tools & Algorithms by O. Bosu and S. K. Thurkral, Oxford University Press, 2007.
- 7. Bioinformatics: Methods and Applications Genomics, Proteomics and Drug Discovery by S.C. Rastogi, N. Mendiratta, P. Rastogi, PHI Learning Pvt. Ltd., 2015.


Practicals on Perl & Bioperl (2 HRS) 50 MARKS Teaching hours per week and credits for practical's only: **02** Hrs **1** Cr

Sr. No.	Name of the Experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Installation of Perl and BioPerl.	Learning installation process.	1. Tisdall James, Beginning Perl for Bioinformatics,
2.	Scripting to understand the scalar data representation.	Declaration of variables and use of operators	O'Reilly Media, 2001. 2. Tisdall James
3.	To write scripts using control structures.	Application of control structures.	Bioinformatics, O' Reilly Media, 2003. 3. Schwartz Randal
4.	Write scripts using arrays and lists with	Use of arrays and lists.	Phoenix Tom and Foy Brian D. Learning Perl, 6 th
5.	Write scripts using hashes with biological example.	To know about data structure hash.	Edition, O'Reilly.
6.	Write scripts for Basic I/O with biological	Handling user input	
7.	Writing regular expressions for motifs and	Learning to write	
8.	Write scripts using subroutines with biological example.	Organizing script using subroutines.	
9.	Scripting to create and delete directories and	Learning directory	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

NAME OF THE COURSE: STRUCTURAL BIOLOGY COURSE CODE: BT 606 MARKS: 150

5 4

3 0 2

OBJECTIVE

The objective of the course is to familiarize the student with Structural Biology.

COURSE OUTCOME:

On completion of the course students will be able to:

- Demonstrate knowledge of the working concepts of different computational tools.
- Describe the information and application of different databases and effective data retrieval for solving research problem.
- Develop basic understanding of different techniques of Structure Prediction and their utilization in Data Analysis.
- Predict the secondary and tertiary structures of proteins and their active sites.
- Investigate specific contemporary biological questions *in-silico* and critically analyze & interpret the results.

PREREQUISITES

Students should be familiar with school level mathematics and Biology to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

Sr. No.	Topics	Detailed syllabus	No. of Lectures
1	Protein sequences,	Overview and scope of Bioinformatics,	02
	sequence alignment;	Computers in biology, medicine & different	
	Basic polypeptide	problems in biology.	
	stereochemistry		
2	Hierarchy in protein	Secondary structure, tertiary structure; Protein	05
	folds:.	structure determination by X-ray crystallography	
3	Principles of protein	protein purification, crystallization, structure	03
	purification,	determination Methods, Structure function	
	crystallization, structure	relationship.	
	determination; Structure		
	validation and best		
	practices on the use of		
	protein structures from		
	the protein data bank;		
	Protein fold-function		
	relationships; structure		
	and annotation.		
4	Tools and methods for	RNA secondary structure prediction and	02
	structure prediction	covariation analysis; RNA secondary structure	
		determination methods, RNA structure	

COURSE DESCRIPTION

		determination and dynamics by X-ray and	O.Y. PATIL VIDYAPEETH, PUN (DEEMED UNIVERSITY)
		NMR, RNA dynamics studies by other	
		biophysical methods	
5	Protein RNA interaction	Dynamics of Protein-RNA complexes; Structure	04
	and functional Analysis	and organisation of genomes; genome	
		sequencing, assembly, annotation and functional	
		genomics	
6	Gene to structure	Gene expression and its regulation; chromosome	03
	functional analysis	topologies, their dependence on cellular states	
		and their influence on gene expression	
7	Protein Dynamics	Protein functional dynamics, Protein dynamics	02
		studies by MD simulations;	
8	Protein dynamics by	Basic NMR techniques	03
	NMR;		
9	Protein dynamics	Computational Methods and Algorithms	03
	studies by other		
	biophysical techniques.		
10	Introduction to	Structure database and tools	03
	structural		
	Bioinformatics.		
		Total Lectures	45

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
First Internal	60 minutes	20
Second Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

REFERENCE BOOKS

1. Biophysics – An Introduction by Cotterill, Wiley Student Edition.

2. Foundations of Biophysics by A.L. Stanford, Academic Press.

3. Principles of protein structure by G Schulz and R H Schrimer, Springer Verlag.

4. Principles of nucleic acid structure by Sanger, Springer Verlag.

5. Introduction to Protein Science by Arthur M Lesk, Oxford University Press.

6. Biological Spectroscopy by J. D. Campbell and R. A.Dwek, Plenum Press.

7. A Textbook of Biochemistry and Biophysics by S.M Gopinath, Archers & Elevators International Publishing House, India. 1st Edition, 2014.

PRACTICAL IN STRUCTURAL BIOLOGY (2 Hrs. Per Week) MARKS: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Understanding Protein structures and Visualization	Visualize and get familiarize with the protein Structure	Basic concepts
2.	Drawing helical wheel for alpha helix	Understanding the structure	Drawing Basic concepts
3.	Using Rasmol and PyMOL for 3-D visualization	Aquanted with rasmol and Pymol	https://pymol.org/
4	Analysis of protein- protein interaction and protein-DNA interaction	Study of Interactions	Interactome
5	Advanced PyMOL usage	Pymol	https://pymol.org/
6	Use of PDBsum for structural analysis	PDBSum Explore	https://prosite.expasy.org/prosite_ link.html
7	Protein-Ligand interactions: LIGPLOT	LIGPLOT expore	
8	Secondary structure prediction methods	Prediction methods	Any standard Method
10	PROSITE - Protein signature patterns	Prosite explore	https://prosite.expasy.org/prosite_ link.html
11	RNA secondary structure visualization	Any standard Tool	Any standard Tool

BOOK RECOMMENDED:

- 1) Introduction to Protein Structure, Carl Branden and John Tooze, Garland Publishing Inc., New York 29.
- 2) Bioinformatics: sequence and Genome Analysis, DW Mount, Cold Spring Harbor Laboratory Press, 200 30. Creighton T.E. ed.
- 3) Protein structure. A practical approach. (2004) Oxford University Press

PRACTICAL EVALUATION SCHEME:

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

SEMESTER VII						
Course Code	Course Name	L	Т	Р	Hr	Cr
BI 701	Molecular Modeling and Drug designing	2	0	4	6	4
BT 701	Nanobiotechnology and Biosensors	2	0	2	4	3
HU 701	Principles of Management & Entrepreneurial Development	2	0	0	2	2
HU 702	Quality Control Management in Biotechnology	2	0	0	2	2
BT 702	Seminars in Biotechnology	3	0	0	3	3
BT 703/704/705	Elective-III	3	0	2	5	4
	Total 14 0 8 22 18			18		
Elective III (Metabolic Engineering/ Agriculture Biotechnology/Cancer Biology)						

COURSE: MOLECULAR MODELING AND DRUG DESIGNINGCOURSE CODE: BI 701L T P Hr CMARKS: 1502 0 4 6 4

OBJECTIVES:

This course gives a detailed information on the basics, recent advances, and various applications of molecular modeling and drug designing.

COURSE OUTCOME:

- To familiarize the student with basic concepts in molecular modelling as: how to build a molecule, how to find out the coordinates of the molecule, how to use the programs that are available in graphics designing.
- To familiarize students with concepts in molecular mechanics and dynamics and to study the energy minimization algorithms
- To introduce them to concepts in quantum chemistry and methods for calculating the energies, that are required in energy minimization and docking studies
- To understand the methodology involved in structure based drug designing, and enzyme inhibition strategies

PREREQUISITES:

This is an introductory course for the students who want to understand the concepts in molecular modeling and drug designing and should make a compulsory subject.

Sr. No	Торіс	Description	Hrs
1	Introduction to Molecular	History, importance and application	
	modeling and		
	chemoinformatics		
2	Molecular Graphics	Representation of molecules using co-ordinates,	05
	Representation	Matrices and tables	
3.	Building of molecules	Building of small molecules, Building of	02
		Biopolymers DNA & oligopeptides in different	
		secondary structure	
4	File Formats	SMILES, mol, mol2, sdf, pdb etc.	06
5	Optimization of geometries	Energy minimization by systematic search	06
	(Molecular Mechanics)	Method, Plotting conformation energy contours,	
		(Ramachandran plot), and finding out minimum	
		energy conformation, Gradient based Energy	
		minimization, Molecular Dynamics method, Monte	
		Carlo method, Genetic algorithm and simulated	
		annealing	
6	Optimization of geometries	Schrödinger equation, Derivation, equation for	03
	(Quantum Mechanics)	Hydrogen and Helium and for a molecule	
7	Ligand based drug design	2D and 3D QSAR, Pharmacophore	05

	techniques		
8	Structure based drug design	Docking and Pharmacophore	02
	techniques		
Total Nu	Total Number of lectures		

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hour 15 minutes	30
Total		50

BOOKS RECOMMENDED:

1. Molecular modeling: Principles and Applications. Andrew Leach, second edition, Pearson Publication

- 2. Molecular Modeling: Basic Principles and Applications, edited by Hans-Dieter Höltje, Gerd Folkers, volume 5, VCH Publishers, Inc. New York, 2008
- 3. Introduction to Computational Chemistry, Frank Jensen, Second Edition, Wiley, 2013
- 4. Structural Bioinformatics. Jenny Gu, Philip E. Bourne, Wiley-Blackwell second edition
- 5. Chemoinformatics: A Text book. Johann Gasteiger, Thomas Engel Wiley-VCH

6. Applied Chemoinformatics: Achievements and Future Opportunities. Thomas Engel, Johann Gasteiger John Wiley & Sons.2018

7. Computational Chemistry and Molecular Modeling - K. I. Ramachandran, Gopakumar Deepa, Krishnan Namboori Publisher: Springer – Verlag Berlin Heidelberg. ISBN: 978-3540773023 8. Practical Chemoinformatics, Karthikeyan Muthukumarasamy, Vyas Renu, Springer 2014

Practical in Molecular Modeling & Drug Designing 4Hrs. per week Marks: 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Molecular Visualization (Small molecules)	Basic functioning of the visualization tool and its importance.	http://www.vlifesciences.com/ https://www.youtube.com/watch?v=tFHBQJFi c9Q http://www.mrc-
2.	Molecular Visualization (Macro molecules like Proteins & DNA)	Basic functioning of the visualization tool and its importance.	<u>lmb.cam.ac.uk/rlw/text/MacPyMOL_tutorial.h</u> <u>tml</u>
3.	Molecular structures-1	Learn to download from databases and molecular structure drawing using fragment library	http://www.vlifesciences.com/ https://www.youtube.com/watch?v=tFHBQJFi c9Q
4	Molecular structures-2	Systematic molecular drawing and calculations of bond length, bond angle and torsional angles	<u>http://www.mrc-</u> <u>lmb.cam.ac.uk/rlw/text/MacPyMOL_tutorial.h</u> <u>tml</u> Chemoffice tutorial (2004)
5	Preparation and study of different file formats	To understand different file formats	http://www.vlifesciences.com/ https://www.youtube.com/watch?v=tFHBQJFi c9Q http://www.mrc- lmb.cam.ac.uk/rlw/text/MacPyMOL_tutorial.h tml Chemoffice tutorial (2004)
6	Energy minimization	Understanding the concept of lowest energy conformation	http://www.vlifesciences.com/ Chemoffice tutorial (2004) Avagadro (https://dasher.wustl.edu/chem430/software/le arning-avogadro.pdf)
7	Molecular dynamics	To know the behavior of molecules with respect to time and temperature within specific solvent	Chem office tutorial (2004) Avagadro (https://dasher.wustl.edu/chem430/software/le

		system	arning-avogadro.pdf)
8	QSAR	To know the generation of molecular descriptors and model building	http://www.vlifesciences.com/ Chem office tutorial (2004)
9	Protein-ligand docking	To understand the interactions of ligand with protein	http://www.vlifesciences.com/ https://sites.ualberta.ca/~pwinter/Molecular_D ocking_Tutorial.pdf

PRACTICAL EVALUATION SCHEME:	
Examination	Marks
Continuous assessment	40
End semester examination	60
Total:	100

COURSE: NANOBIOTECHNOLOGY & BIOSENSORS COURSE CODE: BT 701 MARKS: 100

L T P Hr C 2 0 2 4 3

OBJECTIVES:

The objective of the course is to familiarize the students with advanced research area and basic concept in Nanobiotechnology and Biosensors

COURSE OUTCOME:

- Comprehend the basics of nanobiotechnology, nanomaterials and nanoparticles.
- Demonstrate the application of nanobiotechnology in various fields such as medicine, drug encapsulation and drug delivery and other applications.
- Understand the general concepts of biosensors and their construction and design.
- Demonstrate the applications of biosensors in health care, agriculture and environment.

PREREQUISITES:

Since it is advance course, student should be familiar with basic knowledge of physics, chemistry, and biology.

Sr. No	Торіс	Description	Hrs
1	Introduction to Nanobiotechnology	-Nanotechnology and nanobiotechnology, History, -Broad perspective, and Today's World, -Significance of Nanoscale materials.	03
2	Nanomaterials and nanoparticles	 -Different classes of nanomaterials - Svnthesis and characterization of nanomaterials - One, two, and three dimensional structure of nanomaterials - Bio-mimetics 	06
3	Application of Nanomaterials in medicine	-Drug delivery -Drug encapsulation -Tissue repair and implantation -Nanocoatings - Miniaturized devices/ Lab on a chip Toxic effects of nanomaterials	05
4	Biosensors: General Concepts	-Introduction to biosensors -History of biosensors discovery	02
5	Construction and designing of biosensors	 Components of a typical biosensor Types of biosensors (Calorimetric, Potentiometric, amperometric, optical, Piezo-electric, Immuno based sensors) 	05
6	Applications of biosensors	 -Associated electronics with each category of biosensor - Applications related to healthcare, bio-defense, food and water safety, agriculture and environment 	06
7	Case studies	-Success and failure of Nanodevices and biosensors with suitable examples -Multidisciplinary interactions for biosensor development	03
Tota	l Lectures	·	30

The course would be taught through lectures and practical.

EVALUATION SCHEME (THEORY):				
Duration	Marks			
45 minutes	15			
	5			
1 hour 15 minutes	30			
	50			
	Duration 45 minutes			

BOOKS RECOMMENDED:

- 1. Biosensors and Nanotechnology, (Editors; Zeynep Altintas) John Wiley & Sons Inc, 2017, ISBN: 9781119065159, 9781119065159
- 2. Biosensors and Bioelectronics: D. Dharaneeshwara Reddy, O.M Hussain, DVR. Sai Gopal, Muralidhara Rao, and K.S Sastry. I. K International Publishing House Pvt. Ltd, New Delhi. ISBN 978-93-82332-19-0, Year?
- 3. C. M. Niemeyer, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley VCH, 2006
- 4. David S Goodsell, "Bionanotechnology", John Wiley & Sons, 2004
- 5. Understanding Nanomedicine: An Introductory Textbook, Rob Burgess, Publisher: Pan Stanford Publishing; ISBN-13: 978-9814316385, year?
- 6. Introduction to Nanoscience, S.M. Lindsay, Oxford universal Press, First Edition, 2010 Nanotechnology: Understanding small system, Ben Rogers, SumitaPennathur and Jesse Adams, CRC Press, Second edition, 2011
- 7. Nanobiotechnology: Bioinspired Devices and Material of Future by Oded Shoseyov and Ilan levy, Human Press, First edition, 2007. The Nanobiotechnology Handbook (Editor; Yubing Xie) CRC press.

PRACTICAL IN NANOBIOTECHNOLOGY AND BIOSENSORS: 2 hours perweekMarks: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of silver nanoparticles using sodium borohydride	Method for preparing silver nanoparticles by chemical method	Preparation of colloidal silver nanoparticles by chemical reduction method. <i>Korean Journal of</i> <i>Chemical Engineering</i> . 2009, 26 (1);153–155
2	Green synthesis of silver nanoparticles using bacteria/plant/fungi	The importance of green synthesis of silver nanoparticles. Mechanism involved in synthesis of silver nanoparticles	Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. <u>Journal of Radiation</u> <u>Research and Applied</u> <u>Sciences</u> . 2016 <u>9 (1)</u> :1-7
3	Characterization of nanomaterials using Scanning Electron Microscopy.	The effect of the (nano) size of matter on its properties.	Characterization of silver nanoparticles synthesized using <i>Urtica dioica</i> Linn. leaves and their synergistic effects with antibiotics <u>Journal of Radiation</u> <u>Research and Applied</u> <u>Sciences</u> .2016,9(3):217-227
4	Evaluation of antimicrobial activity of silver nanoparticles against Gram Positive and Gram negative microorganisms	The possible mechanism of antibacterial action of silver nanoparticles. The advantages of silver nanoparticles for medical uses	Characterization of silver nanoparticles synthesized using <i>Urticadioica</i> Linn. leaves and their synergistic effects with antibiotics <i>Journal of Radiation</i> <u>Research and Applied</u> <u>Sciences</u> . 2016, <u>9(3)</u> :217-27
5	Increasing bioavailability of drugs using nanostructured Beta-cyclodextrin	The importance of bioavailability of drugs during the treatment any disease. To increase the bioavailability of drug and its importance for antimicrobial study.	Transformation of Curcumin from Food Additive to ultifunctional Medicine: Nanotechnology Bridging the Gap. <i>Current</i> <i>Drug Discovery</i> <i>Technologies</i> , 2014, 11, 197-213

6	Entropy of silver	The mechanism of relation of	Dr. D.Y. PATIL VIDYAPLETH, PU (DEFINED UNIVERSITY)
6	Entrapment of silver	The mechanism of gelation of	Preparation and
	nanoparticles in alginate	alginate.	Characterization of Silver
	beads for remediation of	Method for preparing alginate	Nanoparticles-Loaded
	water.	beads	Calcium Alginate Beads
			Embedded in Gelatin
		Applications of alginate beads	Scaffolds
		loaded with AgNPs.	<u>AAPS PharmSciTech</u> . 2014;
			15(5): 1105–1115.
7	Study of principle and	The principle of working of a	Glucose Biosensors: An
	working of glucose	typical glucose biosensor.	Overview of Use in Clinical
	biosensor		Practice (2010) Sensors, 10,
		Construction of test strips	4558-4576;
		using GOx. Method of using	doi:10.3390/s100504558
		the glucose biosensor.	
8	Study of conductivity of	Important for developing	
	DNA for use in biosensor	DNA based	Electrical conduction
		amperometricsystems and	through DNA molecules. 1999 Nature 398, 407-410
		biosensors	1777 110
9	Internalization of drug	Study mechanism of silver	Simple and Easy Method to
	conjugated nanoparticles in	nanoparticles penetration	Evaluate Uptake Potential
	mammalian cells	through cells.	of Nanoparticles in
			Mammalian Cells Using a
			Flow Cytometric Light
			Scatter Analysis. Sci.
			<i>Technol.</i> , 2007, <i>41</i> (8), pp
			3018–3024
10	Study of nano-structured	What nanostructures are	Nanostructured materials for
	materials used for tissue	formed in PVA and Pluronic	applications in drug delivery
	engineering	gelation?	and tissue engineering. J
		What are the methods by	Biomater Sci Polym. 2007;
		which PVA and Pluronic	18(3): 241–268.
		form gels	

EVALUATION SCHEME

Examination	Marks
Continuous assessment:	20
End semester examination:	30
Total:	50

COURSE: PRINCIPLES OF MANAGEMENT AND ENTREPRENEURIAL DEVELOPMENT

COURSE CODE: HU 701 MARKS:50

L T P Hr C 2 0 0 2 2

OBJECTIVES:

- Make students understand the work culture in an organization
- Preparing them to be competent in the corporate world
- Motivate students to critically analyse the problem and solve it
- Apply the knowledge of management in their future endeavour

COURSE OUTCOME:

- Well aware of work culture in a corporate and research organization.
- Well equipped with all the things required to be a successful entrepreneur.
- Attain confidence to develop and implement the same policies in their professional endeavours.

PREREQUISITE:

This is an application based and management learning course, so students must have an understanding of the application oriented subject such as Food Biotechnology, rDNA Technology, Plant Biotechnology, Cancer Biology, Pharmaceuticals and Drugs research.

Sr No	Торіс	Description	Hrs
1.	Principles of	Introduction to Management- Management and Manager	4
	Management	Definition, Purpose of Management, Management function,	
		Manager Role in Management, Levels of Management	
		Planning - Nature of planning, Importance of Planning	5
		Planning Process, Barriers to effective planning	
		Forecasting - Importance of Forecasting, Limitations of	
		forecasting, Techniques of Forecasting	
		Organising - Concept of Organising, Advantages of	
		Organising, Need for organising structure	
		Directing - Concept of Directing, Principles of Directing	
		Leadership - Importance of Leaders, Leadership theories	
		(Trait, Behavioural, Situational)	6
		Controlling - Importance of controlling, Controlling Process.	
2.	Entrepreneurial	Preparation of Business plan for Biotech Start-up	4
	Development	Importance of Licensing Technology/Research	
	_	Raising money from Venture Capitalists	
		Government Grants	
		Human Resources management - Definition, Functions and	
		Objectives, Image and qualities of HR Manager	6
		Customers and Competitors	
		Marketing - Introduction to Marketing Management, Role	
		and Function of Marketing Manager.	

Total L	ectures		30
		Current challenges in an Organization Diverse and Global work force Partnerships and Strategic Alliances	5

The course would be covered through lectures, supported by quizzes and case history discussion.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	45mins	15
Teachers assessment		05
End Semester Exam	1hr 15mins	30
Total		50

BOOKS RECOMMENDED:

1) Principles and Practice of Management - by L M Prasad, 9th Edition, 2016

2) Principles of Management - by P C Tripathi and P N Reddy, 6th Edition, 2017.

3) A Handbook on Marketing Management - by Dr V O Varkey, 4th Edition, 2000.

4) Human Resource and Personnel Management- by K Aswathappa, 4th Edition, 2007

COURSE: QUALITY CONTROL MANAGEMENT IN BIOTECHNOLOGY COURSE CODE: HU 702 MARKS: 50

L T P Hr C 2 0 0 2 2

OBJECTIVES:

- Make students realise the importance of Quality control in Pharma and biotech industry
- Prepare students competent in the field of quality control management of drugs and biopharmaceutical
- Create a general motivation amongst students to critically analyse the problem and to apply the knowledge of quality management in their future endeavour.

COURSE OUTCOME:

- Well aware with all the quality standards and policies of the pharma and biotech industry
- Able to practice quality control management in the industry and research labs
- Will be confident to develop and implement the same policies in their work without Compromise

PREREQUISITE:

This is a unique course comprising the combination of research, industry and management, so students should have understanding of all the basic concepts in biotechnology and should be well aware with the working and functioning of the biotech and pharma based industries.

Sr No	Торіс	Description	Hrs
110			
1	Quality Management	Introduction, Definition of Quality, Evolution of	2
		Quality, Dimension of Quality, Factors affecting	
		Quality, Definition of QA/QC.	
2	TQM	Definition of TQM, History of TQM, Concept,	4
		Principles of TQM, TQM Framework, Barriers in	
		TQM implementation, Benefits of TQM, Statistical	
		tools to measure quality, Demings Cycle/PDCA cycle,	
		Quality Movement in India.	
3	Pharmacopoeias	Overview of the latest Indian Pharmacopoeias.	1
4	Standards	ISO 9000 Series, ISO 14000 Series, ISO 22000 Series,	6
	Institutions	ISO 13485 Series, Bureau of Indian Standards (BIS).	
5	Good Manufacturing	Pharmaceutical Manufacturing Flow Chart study,	8
	Practice (GMP) for		
	pharmaceutical	GMP Implementation at - Personnel, Building and	
	Products (API)	Facility, Process Equipment, Material management,	
		Production and in-process control, Packaging and	
		labelling, Storage and Distribution, Laboratory control,	

Loo	tures	Total	30
8	Indian Regulatory Agencies and Accreditation	Central Drug Standard Control Organization (CDSCO) for Drugs. Food Safety and Standards Authority of India (FSSAI) for Food. National Accreditation Board for Testing and Calibration Laboratories (NABL).	3
7	ICH	Introduction and ICH Process for Harmonization.	3
6	Good Laboratory Practices(GLP) and SOP	GLP - History, GLP implementation and organization,GLP status in India.Standard Operating Procedure - Introduction, Need and Implementation.	3
		Validation of analytical procedure, Rejection and Reuse of material, Complaints and recalls, Agents, Brokers, Distributors and Re-labellers, Documentation and Records.	

The course would be covered through lectures, supported by quizzes and case history discussion.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	45mins	15
Teachers assessment		05
End Semester Exam	1hr 15mins	30
Total		50
BOOKS RECOMMENDED:		

- 1. Quality control assurance by T. Anjaneyulu, First Edition(Fifth Reprint) 2017
- 2. Pharmaceutical management by Sachin Itkar, Second Edition 2007
- 3. Pharmaceutical Master Validation Plan by Syed Imtiaz Haider, First Indian Edition 2001
- 4. Biopharmaceuticals Second Edition by Gary Walsh, Second Edition -2011

NAME OF THE COURSE: SEMINARS IN BIOTECHNOLOGYCOURSE CODE: BT 702L T P Hr CMARKS: 1003 0 0 3 3

OBJECTIVES OF THE COURSE:

- To train the students for literature survey
- To understand and present a particular topic, published research work in front of an audience
- To develop capability and potential to discuss, delineate a topic precisely, professionally in an interactive manner

COURSE OUTCOME:

At the end of course, students will be able to:

- Prepare and present power points
- Understand, summarize and present a research article within a particular time frame.
- Handle discussions in a professional manner.
- Demonstrate public speaking skills

Elective III COURSE: METABOLIC ENGINEERING COURSE CODE: BT 703 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVES:

- The course will provide an overview of the basic concepts and experimental techniques used in metabolic engineering and its applications in production of useful compounds of industrial importance.
- The students will also learn that how complex regulatory mechanisms at multiple levels control the dynamics of the cellular metabolism.
- The course will also cover examples of successful engineering strategies used for the production of commercially important primary and secondary metabolites or recombinant proteins.

COURSE OUTCOME:

- At the end of this course, the students will learn and systematically analyze the complexities defining the regulation of various metabolic pathways.
- They will be able to design and learn strain-engineering strategies to alter cellular behavior, metabolic flux, and product formation.
- They will also appreciate the vast industrial applications of metabolic engineering in the field of medicine, energy, and environment.

PREREQUISITES:

Students should be familiar with basic concepts of biochemistry, metabolism and bioinformatics.

Sr.	Topics	Detailed syllabus	No. of
No.	-	•	Lectures
1	Introduction to	Introduction to metabolism, catabolism, anabolism.	12
	metabolic engineering	Basic concepts of metabolic engineering. Key	
	and its importance	differences between metabolic controls of	
		prokaryotes and eukaryotes. Stoichiometry of cellular	
		reactions, enzyme kinetics, reaction rates, dynamic	
		mass balance, yield coefficients and linear rate	
		equations, the black box model, elementary balance,	
		heat balance different models for cellular Reactions-	
		Induction-Jacob Monod Model and its regulation,	
		differential regulation by isoenzymes, concerted or	
		cumulative feedback regulation. Regulation in	
		branched pathways, permeability and transport of	
		metabolites.	
2	Metabolic flux	Building stoichiometric matrix; Steady state and	08
	analysis.	pseudo steady state assumptions; Using different	
		optimizing functions to solve linear programming	
		problem; understanding flux cone and constraints;	
		Introducing additional constraints from	
		thermodynamics.	
3	Experimental	C13 labeling, NMR and GC-MS based methods for	04
	determination of	flux determination.	

	metabolic fluxes.		(DEEMED UNIVERSITY)
4	Computational study	Role of Bioinformatics in the study of metabolic	10
	of metabolic	pathway such as for predicting and engineering	
	engineering.	metabolic pathways. Metabolic pathway databases	
		and models (BioPath, BioSilico, KEGG,	
		HUMANCyc, Model SEED, MouseCyc, Reactome).	
		Metabolic pathway synthesis algorithms.	
5	Industrial applications	Pathway engineering strategies for overproduction of	08
	of metabolic	some commercially important primary and secondary	
	engineering.	metabolites (e.g. amino acids, organic acids, alcohols	
		and therapeutic compounds) or industrially relevant	
		enzymes and recombinant proteins, bioconversion-	
		applications and factors affecting bioconversion,	
		mixed or sequential bioconversions, regulation of	
		enzyme production, strain selection and	
		improvement, the modification of existing or the	
		introduction of entirely new metabolic pathways.	
Total Lectures			

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 minutes	15
Attendance		05
End Semester Exam	02 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Metabolic Engineering: Principles and Methodologies by Gregory N. Stephanopoulus, Aristos A. Aristidou, and Jens Nielsen, Academic Press, 1998.
- 2. Pathway Analysis and Optimization in Metabolic Engineering by Néstor V. Torres and Eberhard O. Voit, Cambridge University Press, 2002.
- 3. The Metabolic Pathway Engineering Handbook: Fundamentals by Christina D. Smolke, CRC Press, 2009.
- 4. The Metabolic Pathway Engineering Handbook: Tools and Applications by Christina D. Smolke, CRC Press, 2009.
- 5. Biochemical Engineering by Harvey W. Blanch and Douglas S. Clark, Marcel Dekker, 1995.
- 6. Synthetic Biology Metabolic Engineering by Huimin Zhao, An-Ping Zeng, Springer 2018.
- 7. Metabolic Engineering for Bioactive Compounds: Strategies and Processes by Vipin Chandra Kalia, Adesh Kumar Saini, Springer 2017.
- 8. Metabolic Engineering by Sang Yup Lee and Eleftherios T. Papoutsakis, Marcel Decker 1999.

PRACTICAL IN METABOLIC ENGINEERING: 2 Hrs. Per Week MARKS: 50

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for
No.			reference and videos
1.	Develop engineering strategies to boost production of industrially relevant compound in E. coli	compounds in E. coli.	The Metabolic Pathway Engineering Handbook: Tools and Applications by Christina D. Smolke, CRC Press, 2009.
2.	Strain engineering (deletion or overexpression of genes) to boost production of target compound followed by metabolite extraction and quantification.	To learn the production process of target compound by strain engineering (deletion or overexpression of genes) followed by metabolite extraction and quantification.	
3.	Demonstration of feed-back regulation and product inhibition.	To demonstrate feed-back regulation and product inhibition.	
4	Development of a flux model and correlation of the model with experimental data.	To develop flux model and correlation of the model with experimental data.	
5	Metabolic pathway databases I BioSilico, BioPath, KEGG	To search and analyze metabolic pathways. Explore database on biochemical pathways. Kyoto Encyclopedia of Genes and Genomes	http://biosilico.kaist.ac.kr/ https://www.mn- am.com/databases/biopath https://www.kegg.jp/
6	Metabolic pathway databases II MouseCyc, Reactome	Explore manually curated database of both known and predicted metabolic pathways for the laboratory mouse. Free, open-source, curated and peer-reviewed pathway database.	http://mousecyc.jax.org/ https://reactome.org/
7	Metabolic pathway databases III and metabolic pathway models. HUMANCyc, Model SEED,	Explore on human metabolic pathways. Optimization and analysis of genome-scale metabolic pathway models.	https://humancyc.org/ https://modelseed.org/

PRACTICAL EVALUATION SCHEME

Examination	Marks
Continuous assessment:	20
End semester examination:	30
Total:	50
Elective III	

Dr. D.Y. PATIL VIDYAPEET (DELMED UNVESTIV)

COURSE: AGRICULTURE BIOTECHNOLOGY COURSE CODE: BT 704 MARKS: 150

L T P Hr C 30_2 5 4

OBJECTIVES:

- To familiarize the students with basic concepts of Agriculture Biotechnology
- To clarify major scientific, ecological and sociological aspects of biotechnology in agriculture and food production.
- To familiarize advanced molecular biology applications in Agriculture Biotechnology

COURSE OUTCOME:

- The students will acquire knowledge about the range of approaches to manipulate and improve the plants, crop production and sustainable agriculture.
- They are able to demonstrate the ability to develop, interpret, and critically evaluate modern approaches to scientific investigation.
- Students will have sufficient scientific understanding of different biotechnological methods to improve the crop production and for sustainable agriculture.
- Students will understand the relationship between society and science and the justification for biotechnological manipulation in agriculture practices.

PREREQUISITES:

The course is an application science, hence the student must have a background with knowledge in the basics of Plant Physiology, Plant Tissue culture and Molecular Biology.

Sr. No.	Particulars	Hrs.
1.	Introduction: Agriculture and Agricultural Biotechnology	2
2	In vitro Germplasm Conservation	2
	Micro propagation	2
	In vitro production of pathogen and/or disease-free plants	2 2 3
3	Biotechnology- Methods of Crop Improvement	
	Genetic Engineering for Crop Plants Improvement. Methods of	3
	gene transfer in plants, Transgenic Plants for biotic and abiotic	
	stress resistance, In vitro induced mutagenesis	
	Role of antisense and RNAi in crop improvement, Regulated and	
	tissue specific expression of transgenes for crop improvement,	5
	Terminator gene technology	
4	Recent advances – Non gel based techniques for plant	3
	genotyping – Homogenous assays – Qualitative/Real Time	
	assays; DNA Chip and its technology.	3
	Molecular breeding (MAS)	
	Transgenic Plants, Molecular Markers, QTL Mapping	3
5	In vitro Production of Secondary Metabolites	5
	Production of foreign compounds in transgenic plants Molecular	
	Pharming, Production of Edible vaccines and other therapeutics,	
	Biotransformation	
6	Biofertilizers and Phyto-remediation	5
	Biopesticides, Agricultural antibiotics	
7	Biotechnology in Agriculture, Hydroponics, Biosafety	3
	regulations, Ethical Aspects and Public Acceptance (Case	
	studies)	

8	Animal farming, Animal farming with organic concept, Animal Breeding & Genetically modified animal products.	5
TOTAL	·	45

The entire course is covered through lectures, group discussions and with the help of ICT enabled teaching aids including PPTs, visits, E-learning resources etc.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED:

- 1. Molecular Plant Breeding By B.D. Singh, N.S. Shekhawat, Scientific Publishers, 2017
- 2. Agricultural Biotechnology by H. D. Kumar, Daya Publishing House, 2005.
- 3. Agrobacterium Protocols, Volume 1- Editor- Kan wang, Humana Press, 2010.
- Agrobacterium Biology- From Basic Science to Biotechnology. Ed. Stanton B. Gelvin, Springer International Publishing, 2018.
- Plant Biotechnology and Agriculture Prospects for the 21st Century, Arie Altman, Paul Michael Hasegawa, Elsevier Science, 2012.
- 6. Biotechnology By B. D. Singh, Kalyani Publishers, 2010.
- 7. Omics Technologies and Crop Improvement by Noureddine Benkeblia, CRC Press, 2014.
- 8. Agricultural Biotechnology by Geetha, Jebaraj S, Pandiyarajan P, Agro-Bios, 2008, Reprint 2012
- 9. The Role of Biotechnology in Improvement of Livestock: Animal Health and Biotechnology by Muhammad Abubakar, Ali Saeed, Oguz Kul, Springer, 2015.

PRACTICAL IN AGRICULTURE BIOTECHNOLOGY: 2 hrs. per week Marks:50

		Literature/ Weblinks for reference and videos
Use of bioreactors in plant secondary metabolite production	Mechanism and Principle involved in preparation of secondary metabolites using bioreactors	Secondary Metabolism of Hairy Root Cultures in Bioreactors In Vitro Cellular & Developmental Biology. Plant <u>Vol. 38, No. 1 (Jan</u> <u>Feb., 2002)</u> , pp. 1-10 (10 pages)
 Application of Polymerase Chain reaction – Marker based selection by using PCR 	To understand the application of DNA technologies in agriculture, and achieve the goals to promote their utilities in modern agriculture science	Polymerase Chain Reaction Technology as Analytical Tool in Agricultural Biotechnology Journal of AOAC International vol. 88, no. 1, 2005
Agro-bacterium-mediated transformation protocol and selection of transformed regenerated plants (Laboratory visit)	To study the mechanism and effect of genetic transformation of clonally propagated crops	Agrobacterium- Mediated Plant Transformation: Biology and Applications bioone.org/journals/the- arabidopsis-book/volume- 2017/issue-15
DNA finger printing methods, RAPD, SSR.	Different molecular biology based methods and their importance in recent advancements in Agricultural sciences	DNA finger printing in plants www.nbpgr.ernet.in Divisions_and_Units Downloadfile.aspx? EntryId=7432
Micropropagation, Visit to micro-propagation and Molecular Biology laboratory - a laboratory with automated Genotyping/sequencing facility.	The importance of micro propagation in plants and understanding the use of genetic engineering tools in it, to improve the quality and outputs of agricultural products	Micropropagation, Genetic Engineering and Molecular Biology of Populas . USDA Forest Service Gen. Tech. Rep. RM-GTR-297. 1997
 Green house technology: Visit to functional green house. Climate: Measurement of temperature, humidity, air velocity, CO2, inside the green house. Calculation of environment indices inside green house. Fertigation, Post-harvest. 	Principle of working of Greenhouse and its importance	Advances in greenhouse automation and controlled environment agriculture International Journal of Agricultural and Biological Engineering 11(1) January 2018.
PRACTICAL EVALUATION	SCHEME: Marks	

Examination	Mark	
Continuous Assessment:	20	
End semester Examination:	30	
Total:	50	

ELECTIVE III COURSE: CANCER BIOLOGY COURSE CODE: BT-705 MARKS: 150

L T PHrC 3 0 2 5 4

OBJECTIVE S:

- The objective of the course is to develop understanding of the biology of cancer.
- The course will elaborate understanding of tumor hallmarks, carcinogens, diagnostic and therapeutic options to cancer patients.

COURSE OUTCOME:

At the end of course, students will be able:

- To understand the origin and development of cancer.
- To explain the molecular basis of tumor pathologies.
- To familiarize with knowledge on current diagnostic and therapeutic avenues for cancer patients. **PREREQUISITES:**

Since the course is advance in nature, basic knowledge in biochemistry, cell biology, genetics, and molecular biology is essential.

Sr.	Topic	Description	Hrs
No.			
1.	Introduction to cancer	Cancer statistics and problems at National and International perspectives. Origin of cancer cell, Genetic, molecular and epigenetic changes in cancer cells, Tumor hallmarks, Tumor microenvironment.	
2.	Cancer progression	Basis of tumour progression, Steps in tumor progression, Cancer stem cell theory for origin of cancer, Classifications, stages and grades of tumors.	6
3.	Causes of cancer	Chemical carcinogenesis Endogenous & exogenous mutagens, Identification of carcinogens, Tumour initiators & tumour promoters	6
	Molecular basis of cancer	Aberrant signaling in cancer, Cellular and viral oncogenes (Gain of Function), Deregulated apoptotic genes (Loss of functions), Genomic landscape of cancers, DNA repair response in cancer, Dysregulation of cell cycle and cell growth, mutation in apoptosis genes, The role of viral genes in cancer progression (DNA tumour virus (SV 40) and human papilloma virus (E6 and E7).	5
	Proto-Oncogenes and Oncogenes	Introduction to Oncogenes families Cell transforming ability of oncogene Retrovirus as a source of cancer Oncogenes: Ras, Myc, Src, Jun and Fos, Controlling factors of oncogene expressions	5
6.	Tumour suppressor genes	Molecular basis of tumor suppressor genes including Retinoblastoma (Rb), p53, Adenomatous polyposis coli (APC) in the development and progression of tumor.	4

- la c		(DEEMED UNIVERSI
7. Metastasis	Molecular basis of metastasis, steps in cell invasion,	4
	intravasation,	4
	transport, colonization, angiogenesis.	
8. Cancer biomarkers	Expanded diagnostic technique, Tumour markers, Nucleic	
and diagnostic option		
	based markers and mitochondrial DNA mutation markers,	
	Epigenetic markers including DNA methylation pattern and	
	chromatin remodeling, mitochondrial DNA	
	chromatin remodeling, intochondriai DIVA	4
0 0 1		-
9. Cancer therapy	Contemporary chemotherapy, radiotherapy	6
	Emerging therapies (Targeted delivery & Synthetic lethal approaches)	
	Inhibitors of oncogenic protein, tumour blood vessels	
	as target for cancer therapy	
	Tumor immunology and cancer immunotherapies	
	Total	45

METHODOLOGY

The entire course is covered through lectures, group discussions and with the help of ICT enabled teaching aids including PPTs, Image, Videos, E-learning resources etc.

EXAMINATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

RECOMMENDED BOOKS

- 1. The Biology of Cancer, 2nd Edition; Author(s): Robert A. Weinberg; Garland Science; 2nd edition (14 May 2013). ISBN: 9780815342205.
- Molecular biology of the cell, Garland Science; 5th edition (November 16, 2007), By Bruce Alberts (Author), Alexander Johnson (Author), Julian Lewis (Author), Martin Raff (Author), Keith Roberts. ISBN-10: 0815341059, ISBN-13: 978-0815341055.
- 3. Cancer Biology, 4 edition (10 May 2007) By Raymond W. Ruddon, Oxford University press, ISBN-10: 0195096908.

PRACTICAL IN CANCER BIOLOGY: 2 hrs. per week Marks:50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	To perform MTT assay for the assessment and understanding of anti- proliferative and cytotoxicity effects using suitable drugs.	To observe and learn concepts of cancer growth, proliferation, toxicity	Dai Y, Grant S. 2011. Methods to study cancer therapeutic drugs that target cell cycle checkpoints. Methods Mol Biol. 2011;782:257-304. doi: 10.1007/978-1- 61779-273-1_19.
2	To study the effects serum starvation in cancer growth and its secreted microenvironment.	To observe and learn about the growth of growth factors and importance of intra- cellular and inter-cellular microenvironment	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.
3	To observe metastasis and angiogenesis (One of hallmarks of cancer) using Boyden chamber assay.	To understand and learn about metastasis and angiogenesis as hallmarks of cancer	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.
4	To perform clonogenic assay to understand clonal concept and growth characteristics of cancer cells.	To understand the concept of clonal theory of cancer growth and proliferation	 Weinberg, R.A. The Biology of Cancer. Second Edition. 2013. Garland Science. Dai Y, Grant S. 2011. Methods to study cancer therapeutic drugs that target cell cycle checkpoints. Methods Mol Biol. 2011;782:257-304. doi: 10.1007/978-1- 61779-273-1_19.
5	To study angiogenesis using chick embryo model.	To understand angiogenesis using chick embryo model	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.
6	To perform wound healing assay.	To develop concept on tissue repair and wound healing	Dai Y, Grant S. 2011. Methods to study cancer therapeutic drugs that target cell cycle checkpoints. Methods Mol Biol. 2011;782:257-304. doi: 10.1007/978-1- 61779-273-1_19.
7	To study spheroid culture as a preferred model for angiogenesis study	To understand the concept of angiogenesis	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.

PRACTICAL EVALUATION SCHEME: Examination Marks

Continuous Assessment:	20
End semester Examination:	30
Total:	50

Semes	ter VIII
BT 801: Research Project/ Industrial Training/ Review writing (5 months)	20 Credits

OBJECTIVES:

The objectives of this course are to:

- Train the students to understand the research environment in a laboratory/ Industrial training and culture
- Enable students to learn practical aspects of research
- Impart training to the students for Literature review, Review writing, data analysis and thesis writing.

COURSE OUTCOME:

At the end of the research project/ Industrial training/ Review writing process the students will be able to:

- Learn how to formulate research questions, and effectively design, execute, evaluate and discuss their study.
- Attain practical training in the applied aspects of Biotechnology/ Bioinformatics in the industry
- Attain in-depth knowledge of the chosen area of research.
- Conduct research independently.
- Carry out appropriate literature survey and formulate review article
- Demonstrate Presentation skills