

DR. D. Y. PATIL VIDYAPEETH

PIMPRI, PUNE – 411 018

DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE

TATHAWADE, PUNE

SYLLABUS FOR

SEMESTER I

B. TECH BIOTECHNOLOGY, B. TECH MEDICAL BIOTECHNOLOGY, M. TECH (INT.) BIOTECHNOLOGY

(BATCH 2018-19)

DR. D.Y. PATIL VIDYAPEETH, PUNE DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE, TATHAWADE, PUNE

B. TECH BIOTECHNOLOGY, B. TECH MEDICAL BIOTECHNOLOGY, M. TECH (INT.) BIOTECHNOLOGY

SEMESTER I						
Course Code	Course Name	L	Т	Р	Hr	Cr
BS 101	Physics	3	0	2	5	4
BS 102	Chemistry	3	0	4	7	5
BT 101	Electronics & Instrumentation	3	0	2	5	4
	Engineering	5				
BI 101	Computers & C Programming	3	0	4	7	5
HU 101	Communication Skills	1	2	0	3	3
BS 103	Maths I – Mathematics	3	1	0	4	4
BT 102	Engineering Graphics	2	0	2	4	3
HU 102	Disaster Management*	0	1	0	1	-
	Total	18	4	14	36	28
*Audit course, attendance is must						

Academic year 2018-2019

TITLE OF THE COURSE: PHYSICS COURSE CODE: BS 101 MARKS: 150

OBJECTIVE

The objective of this course is:

- To create general understanding regarding basic physical principles involved in living systems.
- To familiarize the student with basic concepts in physics as: classical optics used in microscopes and telescopes, thermometry and heat, mechanical, fluid and solid state properties.
- To familiarize students with concepts in digital electronics, lasers, sound waves, electricity.
- To introduce them to concepts in modern physics such as: production of X-ray, X-ray crystallography, quantum mechanics etc.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in classical and modern physics, laser sources, concepts and laws applicable to quantum-mechanical particles. This would enable him to understand use of physical methods in understanding Biomolecular structure and interactions

PREREQUISITES

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Optics: Interference	Introduction to optics, Principles of superposition,	08
	Diffraction &	Constructive & Destructive Interference, Types of	
	Polarization	Interference, Newton's rings.	
		Diffraction- Types of diffraction, Diffraction grating,	
		Rayleigh's criterion, Resolving power of Microscope and	
		Telescope.	
		Polarization of light waves, Polaroid, Optical activity.	
2	Thermometry and	Principles of Thermometry, Temperature and it's	05
	Heat	measurements, Platinum resistance Thermometer,	
		Thermocouple and Thermistors, Modes of Heat Transfer.	
3	Properties of Fluid:	Surface Tension, Surface Energy, Angle of Contact,	07
	Surface Tension &	Capillarity action, Determination of Surface tension by	
	Viscosity		

COURSE DESCRIPTION

		Total Lectures	45
		hypothesis, Heisenberg's Uncertainty principle.	
		effect, wave particle duality of radiation, de Broglie's	
		Plank's Quantum Theory, Properties of Photon, Photoelectric	
	Quantum Mechanics	systems.	
	Introduction to	Introduction to crystal structure, Unit cell, seven crystal	
	rays, Crystallography,	X-Ray diffraction and its Applications.	
10	Modern Physics: X-	Introduction to X-Rays : Introduction, Production of X-rays,	07
		Types of Transformers.	
9	Electricity	Heating effect of electric current, Joule's law, Transformers,	02
		effect, Applications of Ultrasonic waves.	
		Audible, Ultrasonic and Infrasonic waves, Beats, Doppler	
8	Sound waves	Types of sound waves (Longitudinal and Transverse),	03
		Helium Neon Laser, applications of Lasers.	
7	Lasers	Properties of Lasers, Production mechanism, Ruby Laser,	03
	Electronics	logic gates, De-Morgan's Theorem	
6	Introduction to Digital	Introduction to Binary mathematics, BCD numbers, Basic	02
		mode)	
	Devices	Junction Diode, Zener Diode, Junction Transistors (CE,CB	
	Semiconductor	Insulators), intrinsic and extrinsic semiconductors, PN	
5	Solids and	Classification of Solids (Conductor, Semiconductor and	05
		modulus, Determination of Young's modulus.	
4	Elasticity	Stress and Strain, Hook's law, Stress-strain curve, Young's	03
		Determination of 'η' by falling sphere method.	
		flow, Reynold's number, Stoke's law, Terminal velocity,	
		Viscosity, Coefficient of viscosity, streamline and turbulent	
		capillary rise method, Jaeger's method, Temperature dependence of surface tension and its applications.	

METHODOLOGY

The course will be covered through lectures supported by practical's.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- Physics by D. Haliday and R. Resnik 5th edition, Wiley Eastern Pub, 2007.
 Perspectives of Modern Physics by A. Beiser, 6th edition, Mc Graw Hill, 2003.
 Fundamensls of optics by F. A. Jenkins and H. E. White, 4th edition, Mc Graw Hill, 1976.
- 4. Optics by A. Ghatak, 3rd edition, Tata Mc Graw Hill, 2006.
- 5. Digital Principles and Applications by A. P. Malvino, G. Saha and D. P. Leach, 7th edition, Mc Graw Hill, 2011.

6. PRACTICAL IN PHYSICS (TWO HOURS PER WEEK) Marks 50

The practical training would be in the area of optics, electronics, thermometry, calorimeter, conductivity, measurement of physical properties as: viscosity and surface tension.

LIST OF EXPERIMENTS

- 1. Diffraction Grating: Use of diffraction grafting for determination of wavelength of spectral lining.
- 2. Resolving Power: To determine the resolving power of Microscope or telescope.
- 3. Diode Characteristics: Study of forward and reverse characteristics of Diode.

Transistor Characteristics: Study of characteristics of Photocell.

- 4. Band gap of semiconductor: Study of input and output characteristics of a transistor and determination of band gap of a semiconductor.
- 5. Ultrasonic Interferometer: Determination of velocity of ultrasonic waves by ultrasonic
- 6. Study of logic gates (OR, AND, NOT).
- 7. Thermocouple: Study of variation of thermo emf (electromotive force) with temperature.
- 8. Surface Tension: Determination of the surface tension of a given solution.
- 11. Viscosity: Determination the coefficient of viscosity by Stoke's method and its practical application.
- 12. Joule's Law: Determine of Joule's constant.
- 13. Determination of wavelength of monochromatic light by Newton's rings experiments.
- 14. Thermal Conductivity: Determination of coefficient of thermal conductivity of given specimen.

PRACTICAL EVALUATION SCHEME

Examination

Total	:50
End semester examination	: 30
Journal writing	: 5 marks
Attendance	: 5 marks
Practical	: 10 marks