

| COURSE<br>CODE                                                                                                                                                        | COURSE                                            | L     | Т | Р  | CR | CREDIT<br>HRS. |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|---|----|----|----------------|--|--|--|
| SEMESTER I                                                                                                                                                            |                                                   |       |   |    |    |                |  |  |  |
| MS 101                                                                                                                                                                | Biochemistry                                      | 3     | 1 | 4  | 8  | 6              |  |  |  |
| MS 102                                                                                                                                                                | Microbiology                                      | 3     | 1 | 4  | 8  | 6              |  |  |  |
| MS 103                                                                                                                                                                | Cell Biology                                      | 3     | - | 4  | 7  | 5              |  |  |  |
| MS 104                                                                                                                                                                | Introduction to<br>Mathematics &<br>Biostatistics | 3     | - | -  | 3  | 3              |  |  |  |
| MS 105                                                                                                                                                                | Bioanalytical Techniques                          | 3     | - | 4  | 7  | 5              |  |  |  |
| TOTAL                                                                                                                                                                 |                                                   | 15    | 2 | 16 | 33 | 25             |  |  |  |
|                                                                                                                                                                       | SEMEST                                            | ER II |   | 1  |    |                |  |  |  |
| MS 201                                                                                                                                                                | Molecular Biology                                 | 3     | 1 | 4  | 8  | 6              |  |  |  |
| MS 202                                                                                                                                                                | Genetics                                          | 3     | - | -  | 3  | 3              |  |  |  |
| MS 203                                                                                                                                                                | Plant and Animal Tissue<br>Culture                | 3     | - | 4  | 7  | 5              |  |  |  |
| MS 204                                                                                                                                                                | Immunology                                        | 3     | 1 | 4  | 8  | 6              |  |  |  |
| MS 205                                                                                                                                                                | Introduction to<br>Bioinformatics                 | 3     | - | 4  | 7  | 5              |  |  |  |
| MS 206                                                                                                                                                                | Research Methodology                              | 2     | 1 | -  | 3  | 3              |  |  |  |
| TOTAL                                                                                                                                                                 |                                                   | 17    | 3 | 16 | 36 | 28             |  |  |  |
|                                                                                                                                                                       | SEMESTE                                           | R III |   |    |    |                |  |  |  |
| MS301                                                                                                                                                                 | Genetic Engineering                               | 3     | 1 | -  | 4  | 4              |  |  |  |
| MS302                                                                                                                                                                 | Enzymology and Enzyme<br>Technology               | 3     | 1 | 4  | 8  | 6              |  |  |  |
| MS303                                                                                                                                                                 | Bioprocess Technology<br>and Bioengineering       | 3     | 1 | 4  | 8  | 6              |  |  |  |
| MS304                                                                                                                                                                 | Biosafety, Bioethics and IPR                      | 2     | - | -  | 2  | 2              |  |  |  |
| MS305 Elective Course:<br>Biopharmaceuticals<br>Food Biotechnology<br>Environmental<br>Biotechnology<br>Clinical Research<br>Molecular Modeling and<br>Drug Designing |                                                   | 3     | - | 4  | 7  | 5              |  |  |  |
| TOTAL 14 3 12 29 23                                                                                                                                                   |                                                   |       |   |    |    |                |  |  |  |
|                                                                                                                                                                       | SEMESTE                                           | R-IV  |   |    |    |                |  |  |  |
| Project                                                                                                                                                               |                                                   |       |   |    |    | 25             |  |  |  |

# **Course Structure for M.Sc. Biotechnology**

| COURSE<br>CODE | COURSE                                            | L  | Т | Р  | CR | CREDIT<br>HRS. |
|----------------|---------------------------------------------------|----|---|----|----|----------------|
| MS 101         | Biochemistry                                      | 3  | 1 | 4  | 8  | 6              |
| MS 102         | Microbiology                                      | 3  | 1 | 4  | 8  | 6              |
| MS 103         | Cell Biology                                      | 3  | - | 4  | 7  | 5              |
| MS 104         | Introduction to<br>Mathematics &<br>Biostatistics | 3  | - | -  | 3  | 3              |
| MS 105         | Bioanalytical<br>Techniques                       | 3  | - | 4  | 7  | 5              |
|                | TOTAL                                             | 15 | 2 | 16 | 33 | 25             |

#### **SEMESTER I**

| Course Code: #MS 101       | Total Lecture Hr. 48 |
|----------------------------|----------------------|
| Course Title: Biochemistry | L T P Hr C           |
| Marks :150                 | 3 1 4 8 6            |

#### Objective

The objective of this course is:

- To create general understanding about bio-molecules their synthesis, metabolism and interactions in relation to living systems.
- To familiarize the student with basic concepts in bioenergetics and lipid metabolism.

#### Learning outcome

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in biochemical processes. This would enable him to understand use of biochemical methods in understanding synthesis of various products.

#### Prerequisites

This is an introductory course at the masters level. Graduate level knowledge of chemistry and life sciences is sufficient.

| Sr.<br>No. | Topics                                 | Detail syllabus                                                                                                                                                                                                                                                    | No. of<br>lectures |
|------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1          | <b>Bioenergetics</b><br>(Introduction) | <ul> <li>First and second law of<br/>thermodynamics, internal energy,<br/>enthalpy, entropy, concept of free<br/>energy, standard free energy change<br/>of a chemical reaction, redox<br/>potentials, ATP and</li> <li>High-energy phosphate compounds</li> </ul> | 6                  |
| 2          |                                        | • Electron transport chain oxidative phosphorylation, energetics of oxidative posphorylation, energy yield by complete oxidation of glucose.                                                                                                                       | 4                  |

#### **Course Description:**

| 3 | Lipid<br>Metabolism:                                   | <ul> <li>Biosynthesis of lipids: Requirements<br/>of carbon dioxide and citrate for<br/>biosynthesis, Formation of Malonyl<br/>CoA</li> <li>Fatty acid synthase complex.</li> <li>Regulation of biosynthesis.</li> <li>Fatty acid oxidation: Phases of fatty<br/>acid oxidation,</li> <li>Digestion mobilization &amp; transport of<br/>fatty acids mobilization of stored<br/>triglycerides by hormones activation<br/>of fatty acids and their transport in<br/>mitochondria.</li> <li>β-oxidation of saturated and<br/>unsaturated fatty acids</li> <li>Formation of ketone bodies, energetic<br/>of β-oxidation.</li> </ul> | 6 |
|---|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | Triglycerides<br>and<br>phospholipids<br>biosynthesis: | <ul> <li>Biosynthesis of triacylglycerides,<br/>membrane phospholipids,<br/>prostaglandin</li> <li>Phosphoinositol triphosphate, PDGF<br/>(Platelet derived growth factor) Bile<br/>salts, fat-soluble vitamins</li> <li>Biosynthesis of cholesterol and<br/>steroid hormones</li> </ul>                                                                                                                                                                                                                                                                                                                                        | 4 |
| 5 | Glycogen<br>metabolism                                 | <ul> <li>Biosynthesis and degradation of glycogen and its regulation.</li> <li>Starch and cellulose biosynthesis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 |
| 6 | Biosynthesis<br>and<br>degradation of<br>amino acids   | <ul> <li>Conversion of nitrogen to NH4 by<br/>microorganisms, Conversion of<br/>ammonia into amino acids by way of<br/>glutamate &amp; glutamine, Conversion of<br/>citric acid intermediates to amino<br/>acids, glutamate as precursor of<br/>glutamine, proline &amp; arginine,<br/>Conversion of 3-phosho glucerate to<br/>serine, synthesis of cystein from<br/>serine &amp; homocystein. , Biosynthesis<br/>of aromatic acids and one carbon<br/>atom transfer by folic acid</li> </ul>                                                                                                                                   | 8 |
| 7 | Biosynthesis and                                       | Purine biosynthesis: formation of<br>PRPP, Biosynthesis of IMP, Purine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 |

| degradation of<br>purine,<br>pyrimidine<br>nucleotides,<br>regulation                | <ul> <li>nucleotide interconversions,<br/>Regulation of purine biosynthesis</li> <li>Pyrimidine biosynthesis: assembly of<br/>the pyrimidine nucleus, synthesis of di<br/>&amp; tri phosphates, formation of deoxy<br/>ribonucleotides, thymine biosynthesis,<br/>Salvage pathway</li> <li>Degradation of purines &amp; pyrimidines<br/>, uric acid &amp; urea</li> </ul> |   |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Integrationof<br>etabolism &<br>hormonal<br>regulation of<br>mammalian<br>metabolism | • Integration of etabolism & hormonal regulation of mammalian metabolism                                                                                                                                                                                                                                                                                                  | 4 |

The course will be covered through lectures supported by tutorials. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

| Evaluation Scheme (Theory) |               |       |  |  |  |  |
|----------------------------|---------------|-------|--|--|--|--|
| Examination                | Duration      | Marks |  |  |  |  |
| Internal Exam I            | 45 min.       | 15    |  |  |  |  |
| Internal Exam II           | 45 min.       | 15    |  |  |  |  |
| Teachers assessment        |               | 10    |  |  |  |  |
| End Semester Examination   | 2 Hrs 30 min. | 60    |  |  |  |  |
| Total                      |               | 100   |  |  |  |  |

#### **Books recommended**:

- The principles of Biochemistry By Nelson Cox
- Metabolic Pathways By Greenbrg
- Biochemistry by Lubert Stryer 3 rd Edition By W.H. Freeman and Co.
- Biochemistry By G. Zubay, Addision Wesly Publication [1988]
- Biochemistry by J.L.Jain
- Biochemistry by Voet and Voet

#### **Practical in Biochemistry**

Course # MS 102 Microbiology Marks: 150 Total Lecture Hr.= 48 L T P Hr C 3 1 4 8 7

#### Objective

The objective of this course is:

- To create general understanding about distribution, classification and life cycleof microorganisms.
- To familiarize the student with protozoa, viruses, cultivation of microorganism, sterilization techniques..

#### Learning outcome

At the end of the course, the students will be familiar with microbial technology. This would help him to launch himself in industrial biotechnology which is the fastest growing industry in the developing country.

#### Prerequisites

This is an introductory course. Graduate level knowledge of life sciences is sufficient for undertaking this course.

| Sr. | Topics                                              | Detail syllabus                                                                         | No. of   |
|-----|-----------------------------------------------------|-----------------------------------------------------------------------------------------|----------|
| No. |                                                     |                                                                                         | lectures |
| 1   | Distribution,<br>classification and<br>life cycles: | • Distribution ,classification and life cycles                                          | 4        |
| 2   | Classes of<br>Microorganisms                        | <ul><li>Bacteria,</li><li>Fungi</li><li>Anaerobes</li><li>Cyanobacteria</li></ul>       | 6        |
| 3   | Protozoa and Virus                                  | • Protozoa and Viruses (anima plant & bacteriophages etc.)                              | 4        |
| 4   | Ultra structure of microorganisms                   | Ultra structure of<br>microorganisms                                                    | 4        |
| 5   | Cultivation of<br>Microorganism                     | <ul> <li>Cultivation, propagation<br/>and preservation of<br/>Microorganisms</li> </ul> | 4        |

#### **Course Description:**

| 6  | Sterilization                           | • | Sterilization                                                                                           | 4 |
|----|-----------------------------------------|---|---------------------------------------------------------------------------------------------------------|---|
| 7  | Industrially<br>important<br>microbes   | • | Industrially important<br>microbes, secondary<br>metabolites<br>Biotransformation<br>ethanol production | 6 |
| 8  | Antibiotics,                            | • | Antibiotics, Biochemistry<br>of drug resistance                                                         | 4 |
| 9  | Extremophiles                           | • | Extremophiles                                                                                           | 4 |
| 10 | Viral replication:                      | • | Viral replication: Nucleic acid and protein synthesis                                                   | 4 |
| 11 | Viral diagnostics<br>and viral vaccines | • | Viral diagnostics and viral vaccines                                                                    | 4 |

The course will be covered through lectures using power point presentations and overhead projectors. There would self learning component as also presentations by the students. In tutorials, there would be discussion on the topics. There will be two class tests/ and home assignments.

#### **Evaluation Scheme (Theory)**

| Examination              | Duration      | Marks |
|--------------------------|---------------|-------|
| Internal Exam I          | 45 min.       | 15    |
| Internal Exam II         | 45 min.       | 15    |
| Teachers assessment      |               | 10    |
| End Semester Examination | 2 Hrs 30 min. | 60    |
| Total                    |               | 100   |

#### **Books recommended:**

- General Microbiology: Vol. I & 2 by Powar & Daginawala
- Microbiology by Pelczar
- Microbiology by Prescott
- General Microbiology by Stanier
- Instant notes in Microbiology by Nicklin.
- Principle of Fermentation technology by Stanbury & Witter

Practical in Microbiology Course # MS 103 Course Titte: Cell Biology Marks: 150

Total Lecture Hr. = 48 L T P Hr C 3 0 4 7 5

#### Objective

The objective of this course is:

• To create general understanding about cell division, cell cycle, cell organelles, cell signaling and differences in plant and animal cells.

#### Learning outcome

At the end of the course, the students will be familiar with cell science and cell-cell interaction. This would help him to take further courses in biotechnology in the subsequent semesters.

#### Prerequisites

This is an introductory course. Graduate level knowledge of life sciences is sufficient for undertaking this course.

| Sr.<br>No. | Topics                                                   | Detail syllabus                                                                                         | No. of<br>lectures |
|------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------|
| 1          | Cell                                                     | <ul> <li>Diversity</li> <li>Structural and functional organization,</li> <li>Ultra structure</li> </ul> | 6                  |
| 2          | Prokaryotic, plant and animal cell                       | • Prokaryotic, plant and animal cell                                                                    | 4                  |
| 3          | Cell Organelles                                          | Cytoskeleton, subcellular<br>organelles and<br>chromosomes                                              | 4                  |
| 4          | Cell division and Cell cycle                             | • Cell division and Cell cycle                                                                          | 4                  |
| 5          | Intracellular<br>compartments and<br>protein trafficking | • Intracellular<br>compartments and protein<br>trafficking                                              | 6                  |
| 6          | Biomembranes and electrophysiology                       | Biomembranes and<br>electrophysiology                                                                   | 4                  |

#### **Course Description:**

| 7  | Cell signaling                                           | • | Cell surface, hormone<br>receptors<br>Signal transduction<br>Secondary messengers | 6 |
|----|----------------------------------------------------------|---|-----------------------------------------------------------------------------------|---|
| 8  | Cell- cell interaction<br>and cell matrix<br>interaction | • | Cell- cell interaction and cell matrix interaction                                | 4 |
| 9  | Cell differentiation<br>and Apoptosis                    | • | Cell differentiation<br>Apoptosis                                                 | 4 |
| 10 | Plant cell:                                              | • | Plastids,<br>Cytosenescence,<br>Cytoquiescence                                    | 6 |

The course will be covered through lectures using power point presentations and overhead projectors. There would be special discussion componet in teaching. Students would be divided in groups and quiz competitions would be held. This would teach them group activity. In tutorials, there would be discussion on the topics. There will be two class tests/ and home assignments.

#### **Evaluation Scheme (Theory)**

| End Semester Examination              | 2 Hrs 30 min.      | 60    |
|---------------------------------------|--------------------|-------|
| Internal Exam I<br>Tasahara asasarant | 45 min.            | 15    |
| Examination<br>Internal Exam I        | Duration<br>45 min | Marks |

#### **Books recommended**:

- Cell and Molecular Biology by De Robertis.
- Molecular Biology of Cell by Bruce Alberts 2002.
- The cell by Cooper 2000
- Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P. S Verma and VK Agarwaal. Publisher S. Chand and Comp. 2005
- Cell Biology by Powar

| Practical in Cell Biology                       |             |      |      |      |    |
|-------------------------------------------------|-------------|------|------|------|----|
| Course # MS 104                                 | Total Leo   | etui | re E | Ir.= | 48 |
| <b>Course Title: Introduction to Mathematic</b> | es & Biosta | atis | tics |      |    |
|                                                 | L           | Т    | Р    | Hr   | С  |
| Marks: 100                                      | 3           | 0    | 0    | 3    | 3  |

#### Objective

The objective of the course is to familiarize the student with basic concepts in mathematics & statistics.

#### Learning outcome

At the end of the course, the students will have sufficient understanding of different mathematics and statistical tools used in Biotechnology. This knowledge would be applicable in different industries

#### Prerequisites

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the twelfth level they would be helped by the teacher.

| Sr. | Topics          | Detail syllabus                  | No. of   |
|-----|-----------------|----------------------------------|----------|
| No. |                 |                                  | lectures |
| 1   | Biomathematics: | Fundamentals of set theory       | 8        |
|     |                 | • Limits of functions,           |          |
|     |                 | derivatives of function          |          |
|     |                 | Logarithm                        |          |
|     |                 | • Permutation combination,       |          |
|     |                 | Binomial theorem                 |          |
|     |                 | • Differentiation (first order), |          |
|     |                 | partial differential equations   |          |

#### **Course Description:**

| 2 | Bio-Statistics:<br>Introduction                                                                        | <ul> <li>Integration</li> <li>Matrix algebra: Addition,<br/>subtraction, multiplication</li> <li>Transpose inverse, and<br/>conjugate of matrix etc.</li> <li>Scope, application and use<br/>of statistics,</li> <li>Collection and<br/>classification of data,</li> <li>Census and sampling<br/>graphs and diagrams,</li> <li>Arithmetic mean, median<br/>standard deviation</li> </ul> | 6 |
|---|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3 | Correlation and<br>regression:                                                                         | <ul> <li>For ungrouped data, scatter diagram,</li> <li>Calculation and interpretation of correlation coefficient</li> <li>linear regression coefficient, nonlinear relationship transformable to linear.</li> </ul>                                                                                                                                                                      | 6 |
| 4 | Population<br>parameters and<br>sample statistics                                                      | <ul> <li>Sample techniques, simple<br/>random sampling</li> <li>stratified random sampling,<br/>systematic sampling, and</li> <li>standard error of mean</li> </ul>                                                                                                                                                                                                                      | 6 |
| 5 | Estimation, point<br>and interval,<br>confidence interval<br>for population<br>mean and<br>proportion. | <ul> <li>Estimation,</li> <li>Point and interval,</li> <li>Confidence interval for population</li> <li>mean and proportion</li> </ul>                                                                                                                                                                                                                                                    | 6 |
| 6 | Hypothesis testing                                                                                     | <ul> <li>Type I and Type II errors<br/>levels of significance,</li> <li>One-tiled and two-tailed<br/>tests,</li> <li>Application to single mean<br/>and single proportion,</li> <li>Equality of population<br/>means and two population<br/>proportions</li> </ul>                                                                                                                       | 6 |

| 7 | Chi square test for<br>independent attribute<br>in R x C table,<br>special case of 2 x 2<br>table | • | Chi square test for<br>independent attribute in R x<br>C table,<br>special case of 2 x 2 table | 4 |
|---|---------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------|---|
| 8 | Variance ratio, F-<br>test, Fishers Z test,<br>ANOVA                                              | • | Variance ratio,<br>F-test,<br>Fishers Z test,<br>ANOVA                                         | 6 |

The course will be covered through lectures and assignments. They would be given problems to solve in the class room on the board where every body can participate. There will be two class tests/ and home assignments. They would be taught the use of statistical software.

#### **Evaluation Scheme (Theory)**

| Examination              | Duration      | Marks |
|--------------------------|---------------|-------|
| Internal Exam I          | 45 min.       | 15    |
| Internal Exam II         | 45 min.       | 15    |
| Teachers assessment      |               | 10    |
| End Semester Examination | 2 Hrs 30 min. | 60    |
| Total                    |               | 100   |

#### **Books recommended:**

- Statistic by S. G. Gupta
- Statistical Method in Biology by Bailey.
- Mathematics for Biological Science by Jagdish Arya and Ladner.
- Numerical methods by E. Balguruswamy.
- Statistics from biologist by Campbell.

| Course # MS 105                        | Total Lecture Hr. = 4 |  |  |
|----------------------------------------|-----------------------|--|--|
| Course Title: Bioanalytical Techniques | L T P Hr C            |  |  |
| Marks: 150                             | 3 0 4 7 5             |  |  |

#### **Objective**

The objective of the course is to create general understanding of pH measurement, microscopy, spectroscopy, calorimetry, electrophoresis, CD & ORD spectroscopy, X-ray crystallography, sequencing methods, mass spectrography

#### Learning outcome

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in instrumentation used in Biotechnology. This is essential because he would be using these techniques in forth coming semestyers.

#### **Prerequisites**

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

| Sr. | Topics                          | Detail syllabus                                                                                                                                                                                                                    | No. of   |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| No. |                                 |                                                                                                                                                                                                                                    | lectures |
| 1   | Microscopy                      | <ul> <li>Light Microscopy,<br/>Compound Microscopy.</li> <li>Phase Contrast,<br/>Interference Contrast and<br/>Confocal Microscopy.</li> <li>Ultraviolet and<br/>Fluorescence Microscopy.</li> <li>Electron Microscopy</li> </ul>  |          |
| 2   | Colorimetry and<br>Spectroscopy | <ul> <li>Introduction: Properties of electromagnetic radiation, interaction with matter.</li> <li>Difference between spectrophotometer and colorimeter.</li> <li>Visible light spectroscopy: Principle, instrumentation</li> </ul> |          |

#### **Course Description:**

|   |                | and applications.           |
|---|----------------|-----------------------------|
|   |                | • Ultraviolet spectroscopy. |
|   |                | • Infrared spectroscopy     |
| 3 | Centrifugation | Introduction: Basic         |
|   |                | principles of sedimentation |
|   |                | Types of centrifuges        |
|   |                | • Design of centrifuges:    |
|   |                | Types of rotors             |
|   |                | Ultracentrifuge Analytical  |
|   |                | and Preparatory             |
|   |                | Applications.               |
| 4 | Separation     | Chromatography              |
|   | Techniques     |                             |
|   | Chromatography | • Introduction:             |
|   |                | Chromatography theory       |
|   |                | and practice.               |
|   |                | • Paper chromatography.     |
|   |                | • Thin layer                |
|   |                | chromatography.             |
|   |                | • Ion exchange              |
|   |                | chromatography.             |
|   |                | Affinity chromatography.    |
|   |                | Partition chromatography.   |
|   |                | Adsorption                  |
|   |                | chromatography.             |
|   |                | • Introduction to GC, HPLC  |
|   |                | and FPLC.                   |
|   |                | Permeation.                 |
|   |                | Electrophoresis             |
|   |                | Introduction: General       |
|   |                | principle, support media.   |
|   |                | Agarose gels,               |
|   |                | polyacrylamide gels.        |
|   |                | SDS PAGE, 2D PAGE           |
|   |                | • Pulsed field gel          |
|   |                | electrophoresis             |
|   |                | Iso-electric focusing       |
|   |                | Capillary electrophoresis   |

| 5 | Introduction to<br>CD and ORD                                                   | Introduction to CD and     ORD                                                                                             |  |
|---|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| 6 | X-ray<br>Crystallography<br>and Diffraction                                     | • X-ray Crystallography and Diffraction                                                                                    |  |
| 7 | Introduction to<br>ESR, NMR and<br>Mass<br>Spectroscopy,<br>GCMS, MSMS,<br>LSMS | <ul> <li>Introduction to ESR,</li> <li>NMR and Mass<br/>Spectroscopy</li> <li>GCMS, MSMS, LSMS</li> </ul>                  |  |
| 8 | Macromolecular,<br>Sequencer                                                    | <ul> <li>DNA and protein<br/>sequencers</li> <li>Separation of proteins by<br/>2D and 3D protein<br/>sequencers</li> </ul> |  |

The course will be covered through lectures and assignments. They would be given problems to solve in the class room on the board where every body can participate. There will be two class tests/ and home assignments. They would be taught the use of statistical software.

#### **Evaluation Scheme (Theory)**

| Examination De              | uration N     | Marks |
|-----------------------------|---------------|-------|
| Internal Exam I 45          | 5 min. 1      | 5     |
| Internal Exam II 45         | 5 min. 1      | 5     |
| Teachers assessment         | 1             | 0     |
| End Semester Examination 21 | Hrs 30 min. 6 | 50    |
| Total                       | 1             | 100   |

#### **Books recommended:**

- Practical Biochemistry Wilson and Walker.
- A Biologist's guide to principle and techniques of practical biochemistry –Wilson and Golding.
- Principles of Instrumentation-Skoog.
- Analytical Chemistry- Anand and Chatwal.
- Analytical Chemistry David Friefelder
- Practical in Bioanalytical Techniques

| Semester II    |                                          |          |           |             |                 |                |
|----------------|------------------------------------------|----------|-----------|-------------|-----------------|----------------|
| Course<br>Code | Course                                   | Lectures | Tutorials | Practical's | Contact<br>Hrs. | Credit<br>Hrs. |
| MS201          | Molecular<br>Biology                     | 3        | 1         | 4           | 8               | 6              |
| MS202          | Genetics                                 | 3        | -         | -           | 3               | 3              |
| MS203          | Plant and<br>Animal<br>Tissue<br>Culture | 3        | _         | 4           | 7               | 5              |
| MS204          | Immunology                               | 3        | 1         | 4           | 8               | 6              |
| MS205          | Introduction<br>to<br>Bioinformatics     | 3        | -         | 4           | 7               | 5              |
| MS206          | Research<br>Methodology                  | 2        | 1         | -           | 3               | 3              |
| TOTAL          |                                          | 18       | 2         | 16          | 36              | 28             |

| Course Code: MS201                     | Total Marks: 48 |   | <b>48</b> |    |   |
|----------------------------------------|-----------------|---|-----------|----|---|
| Title of the Course: Molecular Biology | L               | Т | Р         | Hr | С |
| Marks: 150                             | 3               | 1 | 4         | 8  | 6 |

#### **Objective:**

The objective of the course is to prepare students competent in the subject through in-depth lectures & laboratory practicals. The objective of the course is to create a general motivation amongst students to critically analyze the problem, and how to apply the knowledge of molecular biology to solve the problems. To prepare them to think independently for developing new research projects through the literature review on a topic of their interest, writing a review article on a topic, and making 15-minutes presentation to the class.

#### Learning outcome:

At the end of the semester, it is expected that students understood the basic genetic mechanisms such as DNA and chromosomes, replication, DNA repair and recombination, gene expression and regulation, and how to apply molecular knowledge to solve a critical problem. It is expected that they will be more confident to develop independent research projects either for pursuing their higher education or for industrial applications.

#### **Pre-requisites**:

This is an advanced level course. Students must have an understanding of introductory undergraduate level courses such as in Biochemistry, Chemistry, Biology, Microbiology, Plant and Animal Biology.

| Sr.<br>No. | Topics      | Detail syllabus                    | Hrs. |
|------------|-------------|------------------------------------|------|
| 1          | DNA &       | Chromosomal DNA and its            | 4    |
|            | chromosomes | packing in the chromatin fiber     | 4    |
|            |             | • The global structure of          |      |
|            |             | chromosomes                        |      |
| 2          | DNA         | • DNA replication mechanism        | 3    |
|            | Replication | • The initiation and completion of | 3    |
|            | and Repair  | DNA replication in                 |      |
|            |             | chromosomes                        | 4    |

#### **Course Description**

|   |                 | • DNA repair                        |           |
|---|-----------------|-------------------------------------|-----------|
| 3 | Recombination   | General recombination               | 4         |
|   |                 | • Site specific recombination       | 3         |
| 4 | Transcription   | DNA to RNA                          | 4         |
|   | and translation | • RNA to protein                    | 4         |
| 5 | Gene            | • DNA binding mitosis in gene       | 3         |
|   | Expression      | regulatory                          | 3         |
|   |                 | • How genetic switches work         | 4         |
|   |                 | • Post transcriptional control.     |           |
| 6 | Comparative     | Comparative genome                  | 4         |
|   | genomics and    | Evolution                           | 4         |
|   | the evolution   |                                     |           |
| 7 | Methods in      | • Isolation, cloning & sequencing   | 4         |
|   | molecular       | DNA                                 | 4         |
|   | biology         | • Analyzing protein structure &     | 4         |
|   |                 | function                            |           |
|   |                 | • Studying gene expression &        |           |
|   |                 | function                            |           |
| 8 | Topic write-up  | • Students will select the Topic of | 4         |
|   | and 15 minutes  | their interest (to be decided in    |           |
|   | presentation    | the mid of semester)                |           |
|   |                 | Total Hours                         | <b>48</b> |

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be given a seminar topic of their own interest in the subject of Molecular Biology. Students are expected to collect review, write a review article and make 15 minutes power point presentation. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation, writeup and power point submission and presentation.

#### **Evaluation Scheme (Theory)**

| Duration      | Marks                                           |
|---------------|-------------------------------------------------|
| 45 min.       | 15                                              |
| 45 min.       | 15                                              |
|               | 10                                              |
| 2 Hrs 30 min. | 60                                              |
|               | 100                                             |
|               | Duration<br>45 min.<br>45 min.<br>2 Hrs 30 min. |

#### **Books Recommended:**

- Molecular Biology of the Gene Watson
- Genes Lewin
- Molecular Biology of the Cell Watson
  Recombinant DNA Technology Watson

## Practical's in Molecular Biology Laboratory Description

| Sr. No. | Laboratory exercise                 | Hrs |
|---------|-------------------------------------|-----|
| 1       | DNA extraction from Plant materials | 4   |
| 2       | Agarose gel electrophoresis of DNA  | 4   |
| 3       | Bacterial DNA extraction & Gel      | 4   |
|         | electrophoresis                     |     |
| 4       | Plasmid DNA extraction & Gel        | 4   |
|         | electrophoresis                     |     |
| 5       | Quantification of DNA by UV         | 4   |
|         | spectrophotometer                   |     |
| 6       | Demonstration of SDS-PAGE           | 4   |
| 7       | Restriction digestion analysis      | 4   |
| 8       | Preparation of competent cells &    | 4   |
|         | transformation                      |     |
| 9       | Replica Plate Techniques            | 4   |

| <b>Evaluation Schemes</b> | Time | Marks |
|---------------------------|------|-------|
| Minor test-I              | 1 hr | 10    |
| Lab report and attendar   | nce  | 5     |
| Journal                   |      | 5     |
| Final                     | 3 hr | 30    |
| Total                     |      | 50    |

#### **Books Recommended**

Molecular Cloning – Sambrook

| Course Code: MS 202   | Te | otal | H | ours | :48 |
|-----------------------|----|------|---|------|-----|
| Course Name: Genetics | L  | Т    | Р | Hr   | С   |
| Marks: 100            | 3  | 0    | 0 | 3    | 3   |

#### **Objective of the course:**

- The objective of the course is to familiarize the students with the importance & universality of Genetics.
- The students would understand Mendelian Genetics & its extensions.
- Students will be aquatinted with Non-Mendelian Genetics, Sex Determination, and Genetic diseases, Syndromes, Chromosomal Aberrations, Bacterial and Population Genetics.
- The students will be familiar with sub-disciplines in Genetics and their importance in applied biological sciences.

#### **Learning Outcome**

At the end of this course students should have sound knowledge of Genetics and its importance in applied sciences with respect to its use in Biotechnology.

#### Prerequisites

Since the course comes under Basic sciences, school level knowledge of biology and chemistry is required by the students to take up this course.

| Sr. | Торіс                                       | Description                                                                                                                                                                                                       | Hrs |
|-----|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| No. |                                             |                                                                                                                                                                                                                   |     |
| 1   | Mendelian and<br>Non-Mendelian<br>genetics: | <ul> <li>Mendelian Laws &amp; numerical<br/>based on Branch diagrams;<br/>Mono, di &amp; Trihybrid crosses;<br/>Pedigree analysis; Gene-<br/>environment interactions,<br/>Intralocus &amp; Interlocus</li> </ul> | 25  |
|     |                                             | Interactions, Linkage & crossing<br>over; Chromosomal analysis,<br>Karyotyping & chromosomal<br>mapping techniques                                                                                                |     |

#### **Course Description**

|   | Genetics                                             | <ul> <li>allelic frequency</li> <li>Hardy Weinberg's law &amp; numericals; Factors affecting changes in allelic &amp; genotypic frequency-</li> </ul>                                                                                                                                                 |   |
|---|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | Genetics                                             | allelic frequency                                                                                                                                                                                                                                                                                     |   |
| 5 | Population                                           | • Genetic variability, Genotypic &                                                                                                                                                                                                                                                                    | 3 |
| 4 | Microbial<br>genetics                                | <ul> <li>Bacterial genetics including<br/>methods of recombination;<br/>conjugation; transformation; &amp;<br/>Transduction</li> <li>Bacteriophage genetics, Yeast<br/>tetrad analysis</li> </ul>                                                                                                     | 8 |
| 3 | Chromosomal<br>Aberrations &<br>genetic<br>disorders | <ul> <li>Structural &amp; numerical<br/>Chromosomal Aberrations and<br/>various genetic syndromes &amp;<br/>disorders</li> </ul>                                                                                                                                                                      | 7 |
| 2 | Sex<br>determination                                 | <ul> <li>organelle heredity; Plasmid<br/>inheritance, Infectious heredity &amp;<br/>Maternal effect</li> <li>Sex determination mechanisms &amp;<br/>numericals; Genotypic Sex<br/>determination mechanisms;<br/>Environmental Sex determination<br/>mechanisms; Sex linked<br/>inheritance</li> </ul> | 5 |

**Methodology** The course would be taught through lectures, demonstrations & tutorials with the help of logical questions and numericals etc.

| <b>Evaluation Scheme (Theory)</b> |               |       |
|-----------------------------------|---------------|-------|
| Examination                       | Duration      | Marks |
| Internal Exam I                   | 45 min.       | 15    |
| Internal Exam II                  | 45 min.       | 15    |
| Teachers assessment               |               | 10    |
| End Semester Examination          | 2 Hrs 30 min. | 60    |
| Total                             |               | 100   |

#### **Text books**

A text book of genetics by Sambhamurthy

#### **Reference Books**

- Genetics by Russell
- Genetics by Klug
- Genetics by Tamarind
- Genetics by Snustad & Simmons
- Genetics by C.B Powar
- Genetics by B.D Singh
- Genetics by Pierce

#### Title of the Course: Plant and Animal Tissue Culture

|               | Total Hrs : 48 |
|---------------|----------------|
| Course MS 203 | L T P Hr C     |
| Marks: 150    | 3 0 4 7 5      |

#### **Objective of the course:**

The objective of the course is to familiarize the students with the basics of Animal Tissue Culture Techniques and use of in various fields of research and human welfare.

#### **Learning Outcome**

At the end of the course, the students will have sufficient scientific understanding of the Animal Tissue Culture techniques, knowledge of aseptic handling of cell lines. Use of these techniques in various fields of research and medicine and human welfare.

#### Prerequisites

Student should have background of cell biology, cell division, basic of aseptic laboratory techniques. They should know basic concept of various laboratory media.

| Sr.<br>No. | Торіс                                                                           | Description                                                                                                                      | Hrs |
|------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| 1          | Introduction                                                                    | <ul> <li>History</li> <li>Cell theory, cellular<br/>totipotency,</li> <li>various terminologies</li> </ul>                       | 2   |
| 2          | Organization of<br>plant tissue culture<br>laboratory and<br>Aseptic Techniques | <ul> <li>Aseptic laboratory</li> <li>Different work areas</li> <li>Equipments and<br/>instruments required</li> </ul>            | 6   |
| 3          | Culture medium                                                                  | <ul> <li>Nutritional requirements of the explants.</li> <li>PGR's and their in vitro roles</li> <li>Media preparation</li> </ul> | 3   |

#### **Course Description**

| 4  | Callus culture<br>technique                                      | <ul> <li>Introduction, principle,<br/>protocols</li> <li>Genetic variation and<br/>applications</li> </ul>                                                                                                                                                                                      | 3 |
|----|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5  | Suspension culture<br>technique                                  | <ul> <li>Introduction, principle,<br/>protocols</li> <li>Types, growth and growth<br/>measurement.</li> <li>Synchronization,<br/>application and limitations</li> </ul>                                                                                                                         | 3 |
| 6  | Anther and pollen culture technique                              | <ul> <li>Introduction, principle,<br/>protocols</li> <li>Haploids and its<br/>application</li> </ul>                                                                                                                                                                                            | 4 |
| 7  | Protoplast culture<br>and Somatic<br>Hybridisation               | • Stages, requirement, application                                                                                                                                                                                                                                                              | 4 |
| 8  | Clonal Germplasm<br>and<br>Micropropagation                      | <ul> <li>Concept, requirements,<br/>stages, explants, mention<br/>of somaclonal variation</li> <li>Different pathways of<br/>micropropagation:</li> <li>Axillary bud proliferation</li> <li>Somatic embryogenesis<br/>and artificial seeds.</li> <li>Organogenesis</li> <li>Meristem</li> </ul> | 5 |
| 9  | Secondary<br>metabolites<br>production and<br>biotransformations | <ul> <li>Introduction, principal,<br/>optimization of yield.</li> <li>Commercial aspects,<br/>applications and<br/>limitations.</li> <li>Application of bioreactors</li> </ul>                                                                                                                  | 4 |
| 10 | Plant tissue culture production                                  | <ul><li>Agricultural crops</li><li>Transgenic Plants.</li></ul>                                                                                                                                                                                                                                 | 4 |

|    |                                                           | Total Lecture                                                                                                                                                                                                            | 48 |
|----|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 20 | Cryopreservation<br>and tissue culture<br>applications    | Cryopreservation and<br>tissue culture applications                                                                                                                                                                      | 2  |
| 19 | Transplantation,<br>tissue culturing.                     | • Transplantation, tissue culturing.                                                                                                                                                                                     | 2  |
| 18 | Bioreactors for<br>large-scale culture<br>of animal cells | • Bioreactors for large-scale culture of animal cells                                                                                                                                                                    | 2  |
| 17 | Production of<br>vaccine in animal<br>cells:              | • Use of Hybridoma for production of monoclonal antibodies.                                                                                                                                                              | 2  |
| 16 | Karyotyping                                               | • Karyotyping biochemical<br>and genetic<br>characterization of cell<br>lines                                                                                                                                            | 2  |
| 15 | Secondary<br>mammalian and<br>insect cell lines           | • Establishment and<br>maintenance of secondary<br>mammalian and insect cell<br>lines                                                                                                                                    | 2  |
| 14 | Primary cell cultures                                     | <ul> <li>Establishment and<br/>maintenance of primary<br/>cell cultures of adherent<br/>and non-adherent cell<br/>lines,</li> <li>Fibroblasts, endothelial<br/>cells, embryonic cell lines<br/>and stem cells</li> </ul> | 4  |
| 13 | Nutritional and<br>physiological<br>Aspects               | <ul><li>Growth factors and growth parameters</li><li>General metabolism</li></ul>                                                                                                                                        | 4  |
| 12 | Introduction to<br>Animal Tissue<br>Culture               | <ul> <li>History,</li> <li>Cell culture techniques,<br/>equipment,</li> <li>Sterilization methodolog</li> </ul>                                                                                                          |    |
| 11 | Applications of<br>Plant Tissue Culture                   | <ul><li>Somaclonal variation</li><li>Germplasm preservation</li></ul>                                                                                                                                                    | 4  |

The course would be taught through lectures, demonstrations & tutorials with the help of logical questions and numerical etc.

| Evaluation Scheme (Theory) |               |       |  |  |
|----------------------------|---------------|-------|--|--|
| Examination                | Duration      | Marks |  |  |
| Internal Exam I            | 45 min.       | 15    |  |  |
| Internal Exam II           | 45 min.       | 15    |  |  |
| Teachers assessment        |               | 10    |  |  |
| End Semester Examination   | 2 Hrs 30 min. | 60    |  |  |
| Total                      |               | 100   |  |  |

#### **Books recommended**

- Plant tissue culture by A. C. Deb.
- Plant tissue culture by Dodds and Roberts.
- Biotechnology by H. D. Kumar.
- Biological science by Taylor.
- Biotechnology by B. D. Singh.
- Cell and Tissue Culture by John Paul.
- Basic Cell Culture Vol. 290 Protocols by Cheryl D Helgason, Cindy L Miller. Humanan Press
- Basic Cell Culture 2<sup>nd</sup> Edition by JM Davis Oxford Press
- Tissue Culture in Biological Research by G. Penso and D. Balduki.
- Biotechnology by B. D. Singh.
- Principle of Fermentation Technology by Wittakar

# Course Title: Practicals in Tissue Culture L T P Hr C 0 0 4 4 2

| Sr. | Laboratory exercise                                    | Hrs |
|-----|--------------------------------------------------------|-----|
| No. |                                                        |     |
| 1   | A. Preparation of stock solution of MS media           | 4   |
|     | B. Preparation of stock solution of iron salts of MS   |     |
|     | media                                                  |     |
|     | C. Preparation of stock solution of vitamins and       |     |
|     | amino acids of MS media                                |     |
| 2   | To prepare Ca-Mg free PBS                              | 4   |
| 3   | To culture Monolayer of chick embryo fibroblast        | 4   |
| 4   | To study the permanent Histological slides of Chick    | 4   |
|     | embryo                                                 |     |
| 5   | To maintain aseptic conditions in Plant tissue culture | 4   |
|     | laboratory                                             |     |
| 6   | Preparation of stock solution of different Cytokinins  | 4   |
|     | and Auxins                                             |     |
| 7   | To develop callus culture from excised tap root of     | 4   |
|     | carrot                                                 |     |
| 8   | To culture embryo from Dicot seeds.                    | 4   |
| 9   | Cell suspension culture of Azadirachta indica          | 4   |

# **Evaluation Scheme:** Examination-Lab

| Total                     |      | 50 |
|---------------------------|------|----|
| Final                     | 3 hr | 30 |
| Journal                   |      | 5  |
| Lab report and attendance |      | 5  |
| Minor test-I              | 1 hr | 10 |
| ination-Lab               |      |    |

| Title of the Co | ourse: Immunology |
|-----------------|-------------------|
| Course code:    | MS-204            |
| Marks: 150      |                   |

L T P Hr C 3 1 4 8 6

#### **Objective of the course:**

The objective of the course is to familiarize the students with the immune system and it's function and the advances in the immunology.

#### **Learning Outcome**

At the end of the course, the students will have sufficient scientific understanding of immune system, molecular biology of antibody formation, various immunological assay and function of immune system in various microbial infections.

#### **Prerequisites**

Student should have background of cell biology. They should know basic concept of molecular biology also to understand expression off immunoglobulin gene. They should know some basic assays.

| Sr.<br>No. | Торіс                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs |
|------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1          | Introduction to<br>immunology | <ul> <li>Overview of Immune system:<br/>History and scope of<br/>Immunology,</li> <li>Types of immunity: innate,<br/>acquired, comparative<br/>immunity.</li> <li>Immune dysfunction and its<br/>consequences.</li> <li>Cells and Organs of Immune<br/>system: Cells of the immune<br/>system lymphoid cells: B, T<br/>and null cells,</li> <li>Primary lymphoid organs,<br/>secondary lymphoid organs,<br/>lymph nodes, spleen mucosal<br/>associated lymphoid tissues</li> </ul> | 6   |

#### **Course Description**

| 2 | Generation of B-<br>cell and T- cell | • | Antigens: Immunogenicity vs.     | 4 |
|---|--------------------------------------|---|----------------------------------|---|
|   | response:                            |   | Enitones (properties of B-cell   |   |
|   | responser                            | • | and T-cell epitopes)             |   |
| 3 | Immunoglobulins                      | • | Basic and fine structure of      | 6 |
| - | Structure and                        |   | immune-globulin: light chains.   | - |
|   | Function:                            |   | heavy chains and sequences       |   |
|   |                                      | • | Antigen determinants on          |   |
|   |                                      |   | Immunoglobulin: Isotopic,        |   |
|   |                                      |   | allotypic, Idiotypic             |   |
|   |                                      | • | Immunoglobulin super family      |   |
| 4 | Immunoglobulin                       | • | Immunoglobulin mediated          | 6 |
|   | Classes and                          |   | effectors functions optimization |   |
|   | Biological                           | • | Activation of complement         |   |
|   | Activity:                            | • | Antibody dependent cell          |   |
|   |                                      |   | mediated cytotoxicity.           |   |
|   |                                      | • | Clinical focus: Passive antibody |   |
|   |                                      |   | therapy (IgG, IgM, IgA, IgE and  |   |
|   |                                      |   | IgD), hypersensitivity and       |   |
|   |                                      |   | immunological disorder           |   |
| 5 | Organization and                     | • | Genetic model compatible with    | 8 |
|   | Expression of                        |   | Ig structure                     |   |
|   | Immunoglobulin                       | • | Multigene organization of Ig     |   |
|   | Genes:                               |   | genes                            |   |
|   |                                      | • | Variable region gene             |   |
|   |                                      |   | rearrangements                   |   |
|   |                                      | • | Mechanism of variable region     |   |
|   |                                      |   | DNS rearrangements               |   |
|   |                                      | • | Generations of antibody          |   |
|   |                                      |   | diversity                        |   |
|   |                                      | • | Class switching among constant   |   |
|   |                                      |   | Expression of Ig cones           |   |
|   |                                      |   | Deputersion of Ig genes          |   |
|   |                                      |   | transcription                    |   |
|   |                                      |   | Antibody and genes and           |   |
|   |                                      | ſ | antibody engineering             |   |
|   |                                      | • | Clinical focus                   |   |
|   |                                      | 1 |                                  |   |

| 6 | Antigen Antibody<br>Interactions:<br>MHC-Major<br>Histo- | •<br>•<br>•<br>•<br>•<br>• | Strength of antigen and antibody<br>interactions: Antibody affinity,<br>antibody avidity<br>Cross reactivity<br>Precipitation reactions,<br>agglutination reactions<br>(immunodiffusion and<br>immunoelectrophoretic<br>technique)<br>Radioimmunoassay<br>Enzyme linked<br>Immunosorbant./Assay(ELISA)<br>Western Blotting<br>Immuno precipitation<br>Immunoflurenscence<br>Flow cytometery and<br>Fluorescence<br>MHC molecules and genes | 6   |
|---|----------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | compatibility                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 8 | Immune System<br>in Health and<br>Disease:               | •<br>•<br>•                | Immune response to infectious<br>disease (viral, bacterial and<br>protozoan)<br>Vaccines (whole organism,<br>purified macromolecules,<br>recombinant vaccine, synthetic<br>polypeptide etc.<br>AIDS, and other acquired or<br>secondary immuno deficiency<br>orders<br>Autoimmunity<br>Transplantation immunology:<br>graft rejections, graft vs host<br>response<br>Cancer and immune system                                              | 8   |
| 1 |                                                          | 110                        |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143 |

The course would be taught through lectures, demonstrations and LCD Power Point presentation.

| Evaluation Scheme (Theory) |               |       |  |  |  |
|----------------------------|---------------|-------|--|--|--|
| Examination                | Duration      | Marks |  |  |  |
| Internal Exam I            | 45 min.       | 15    |  |  |  |
| Internal Exam II           | 45 min.       | 15    |  |  |  |
| Teachers Assessment        |               | 10    |  |  |  |
| End Semester Examination   | 2 Hrs 30 min. | 60    |  |  |  |
| Total                      |               | 100   |  |  |  |

#### **Books Recommended:**

- 1. Immunology 5<sup>th</sup>edition by Janis Kuby (W.H Freeman and company)\*
- Essentials of Immunology by Ivan M. Roitt 5<sup>th</sup> Edition Blackwell Scientific Publ.
- 3. Cellular and Molecular Immunology, 3<sup>rd</sup> edition, by Abbas
- 4. Molecular Biology of the Cell by Bruce Alberts

## **Course Title: Practicals in Immunology Course Discription:**

| Sr.N | Laboratory exercise                        | Hrs |
|------|--------------------------------------------|-----|
| 0.   |                                            |     |
| 1    | Immunodiffusion- Single diffusion and      | 4   |
|      | double diffusion                           |     |
| 2    | ELISA demonstration                        | 4   |
| 3    | Western blotting test demonstration        | 4   |
| 4    | Preparation of O and H antigen of          | 4   |
|      | Salmonella typhi.                          |     |
| 5    | Blood grouping test                        | 4   |
| 6    | WIDAL test                                 | 4   |
| 7    | VDRL test                                  | 4   |
| 8    | Separation of PBMC's from peripheral       | 4   |
|      | blood.                                     |     |
| 9    | SDS-PAGE and separation of serum proteins. | 4   |

#### **Evaluation Scheme:**

| Evaluation Schemes        | Time | Marks |
|---------------------------|------|-------|
| Minor test-I              | 1 hr | 10    |
| Lab report and attendance |      | 5     |
| Journal                   |      | 5     |
| Final                     | 3 hr | 30    |
| Total                     |      | 50    |

# Title Of Course: Introduction to BioinformaticsTotal Hrs: 48Course code: MS 205LTPHrCMarks: 15030475

#### Objective

- The objective of the course is to familiarize the student with different areas of Bioinformatics. Student would be made familiar with :
- Biological data, different kinds of data bases, data mining and comparisons within a particular data set.
- He would be acquainted with different FORMATs used in DNA and protein sequence data bases at NCBI, Gene Bank flat file, EMBL. He would also be taught use of PUBMED, and other information available in Bionet.
- He would be able to use different algorithms used in sequence alignment and data base searching: scoring matrices, PAM and BLOSUM, local and global alignment concepts, FASTA and BLAST techniques, phylogenetic analysis.
- He would also be made familiar with 3D structure of small molecules, Biopolymers, building small molecules and Biopolymers, Accessing structural databases (PDB), Downloading DNA and protein structures, protein modeling and drug designing principles.

#### Learning outcome

At the end of the course, the student will understand role of Bioinformatics in Biotechnology, Different areas of Bioinformatics, Different tools used in Bioinformatics. He would be able to build small molecules, oligonucleotides and oligopeptides with different secondary structures and would be introduced to protein modeling, drug designing and phylogenetic analysis

## **Course Description :**

| Sr. | Торіс                 | Description                  | Hrs |
|-----|-----------------------|------------------------------|-----|
| No. |                       |                              |     |
| 1   | Introduction to       | Introduction to Biological   | 6   |
|     | Biological data,      | data, Different areas in     |     |
|     | Different areas in    | Bioinformatics               |     |
|     | Bioinformatics        | Bioinformatics and internet  |     |
|     | Bioinformatics and    |                              |     |
|     | internet              |                              |     |
| 2   | Biological sequence   | Biological sequence data     | 6   |
|     | data bases            | bases                        |     |
| 3   | Sequence alignment    | Sequence alignment and data  | 7   |
|     | and data base search  | base search                  |     |
|     | Structural data bases | Structural data bases        | 4   |
|     | Small molecular       | Small molecular modeling,    | 5   |
|     | modeling, properties  | properties and Chemical data |     |
|     | and Chemical data     | bases                        |     |
|     | bases                 |                              |     |
|     | Basic principles in   | Basic principles in protein  | 3   |
|     | protein modeling and  | modeling and drug designing  |     |
|     | drug designing        |                              |     |
|     |                       | Total                        | 31  |

#### Methodology

The course would be taught through lectures, demonstrations and practical using Internet resources, Hyperchem, ISIS Draw and RASTOP

| <b>Evaluation Scheme (Theory)</b> |               |       |
|-----------------------------------|---------------|-------|
| Examination                       | Duration      | Marks |
| Internal Exam I                   | 45 min.       | 15    |
| Internal Exam II                  | 45 min.       | 15    |
| Teachers assessment               |               | 10    |
| End Semester Examination          | 2 Hrs 30 min. | 60    |
| Total                             |               | 100   |

#### **Reference Books**

- Introduction to Bioinformatics:T.K.Attwood & Parry Smith, 1999. Longman Higher Education.
- Introduction to Bioinformatics :Lesk, A.M. 2002.. Oxford University Press;
- Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach (Practical Approach Series Des Higgins and Willie Taylor. (Paper)). 2000. Oxford University Press. 0199637903.
- Bioinformatics A practical guide to analysis of genes and protein: BaxevanisA., D & Ouellette B.F.F Wiley
- Developing Bioinformatics Computer Skills: Cynthia Gibbs and Per Jambeck. O'Reilly & Associates.Per Jambeck (Paperback)
- Essentials of Biophysics: P. Narayanan, New Age International Publishers,
- Biophysics : Vasanta Pattabhi, Vikas Publishing
- Molecular Modeling :Holtje and Folkers G Weinheim New York

| Course | Title: | <b>Practicals</b> | in | <b>Bioinformatics</b> |
|--------|--------|-------------------|----|-----------------------|
|        |        |                   |    |                       |

| Sr. No | Laboratory Exercise                                                                                                                                                                                                                         | Hr |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1      | Use of internet for accessing Bioinformatics work.<br>Make list of Biological data bases available at<br>NCBI and EMBL                                                                                                                      | 4  |
| 2      | Learn use of Pubmed, Go to NCBI site. Open<br>PubMed, Understand data structure in PubMed and<br>Use of PUBMED for sorting Literature, Authors,<br>Abstracts,                                                                               | 4  |
| 3      | Find out secondary structure of a protein whose<br>structure is already available at Protein Data Bank<br>(PDB)                                                                                                                             | 4  |
| 4      | Predict Secondary structure of a protein using Chou<br>& Fasman Method                                                                                                                                                                      | 4  |
| 5      | Predict Secondary structure of a protein using tools<br>available at EXPASY molecular Biology Server<br>and Compare the secondary structure obtained by<br>two methods                                                                      | 4  |
| 6      | Calulate Properties of a protein based on its primary<br>structure using tools at EXPASY molecular Biology<br>Server                                                                                                                        | 4  |
| 7      | Six frame search of a open Reading Frame<br>(manually as well as using tools at EXPASY<br>molecular Biology Server                                                                                                                          | 4  |
| 8      | Translare a gene sequence to amino acid sequence<br>and construct CODON usage table for a given<br>amino acid                                                                                                                               | 4  |
| 9      | Align a given sequence with respect to sequences<br>given in SWISS-PROT data base using BLAST<br>algorithm at EXPASY.                                                                                                                       | 4  |
| 10     | Build a small molecule using: MOE or ISIS-<br>DRAW and write down its coordinates in PDB and<br>ECEPP FORMAT                                                                                                                                | 4  |
| 11     | Build DNA molecule of a given length, secondary<br>structure and sequence using MOE, Hamog, or<br>Model. Get (Coordinate output in PDB Format.<br>View the molecule using RasMol, RasTop, Qmol or<br>any other molecular graphics soft ware | 4  |

| 12    | Peptide chain of a given length, secondary structure<br>and sequence using MOE, Hamog, or Model. Get<br>(Coordinate output in PDB Format. View the<br>molecule using RasMol, RasTop, Qmol or any<br>other molecular graphics soft wareCalculate<br>charges on atom center of a small molecule whose<br>coordinates are known | 4  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 13    | Take a PDB file from PDB bank. Plot the                                                                                                                                                                                                                                                                                      | 4  |
|       | Ramachandran map for the same using MOE or                                                                                                                                                                                                                                                                                   |    |
|       | MolMol.                                                                                                                                                                                                                                                                                                                      |    |
| 14    | Calculate potential surface around a given small                                                                                                                                                                                                                                                                             | 4  |
|       | molecule for which atomic coordinates and charges                                                                                                                                                                                                                                                                            |    |
|       | on atom center are known using MOE or Hamog                                                                                                                                                                                                                                                                                  |    |
| 15    | Find out ligand binding site of a given protein using                                                                                                                                                                                                                                                                        | 4  |
|       | MOE.                                                                                                                                                                                                                                                                                                                         |    |
| Total |                                                                                                                                                                                                                                                                                                                              | 60 |

## **Evaluation Scheme:** Examination-Lab

| amination-Lab                   |    |
|---------------------------------|----|
| Minor test/Continues assessment | 20 |
| Final                           | 30 |
| Total                           | 50 |
|                                 |    |

| TITLE OF THE CO | URSE: RESEARCH METH | HO | DOL | 00 | JΥ |
|-----------------|---------------------|----|-----|----|----|
| COURSE CODE     | : MS 206            | L  | TP  | Hr | С  |
| MARKS           | : 100               | 2  | 10  | 3  | 3  |

#### **Objective of the course:**

The objective of the course is to familiarize the students with basics of research methodologies required to carry out scientific studies in different disciplines, their analysis, documentation and publication.

#### Learning outcome:

At the end of the course, the students will have sufficient understanding of the basic knowledge of research methodology which is basically knowledge of Biosatistic tools like chi square test, f test, ttest ,multivariate analysis, regression analysis, random block design and software packages like SPSS for statistical analysis. Students will have basic knowledge of scientific writing skills.

#### **Prerequisites:**

Student should be aware of basic principles of statistics and basic hands on exposure working on computers.

| Sr. | Торіс          | Sub topic                          | Lectures |
|-----|----------------|------------------------------------|----------|
| No. |                |                                    |          |
| 1.  | Introduction   | An overview of research            | 4        |
|     |                | methodology                        |          |
|     |                | Defining the research problem      |          |
|     |                | Selecting the problem              |          |
| 2.  | Hypothesis     | What is hypothesis                 | 2        |
|     |                | Research hypothesis and Null       |          |
|     |                | hypothesis                         |          |
| 3.  | Research       | Meaning of research                | 3        |
|     | Design         | Objective of research              |          |
|     |                | Motivation of research             |          |
|     |                | Significance of research           |          |
| 4.  | How to prepare | Literature survey for the proposed | 3        |
|     | a research     | research work                      |          |
|     | proposal       |                                    |          |
| 5.  | How to conduct | Sampling fundamentals              | 4        |
|     | field survey   | Important sampling distributions   |          |

#### **Course description**

| 6.  | Methods of data   | Collection of primary data             | 4  |
|-----|-------------------|----------------------------------------|----|
|     | and information   | Observation method                     |    |
|     | collection        | Interview method                       |    |
|     |                   | Method of data collection              |    |
|     |                   | Collection of secondary data           |    |
|     |                   | Selection of appropriate method for    |    |
|     |                   | data collection                        |    |
| 7.  | Processing and    | Basic statistical techniques           | 5  |
|     | analysis of data  | Analysis of variance, Chi square       |    |
|     |                   | test, ANOVA standard deviations, F     |    |
|     |                   | and t test. Tubular and graphical      |    |
|     |                   | presentation of                        |    |
|     |                   | data,Histogram,frequency polygon,      |    |
|     |                   | pie chart.                             |    |
|     |                   | Parametric and Non parametric tests,   |    |
| 8.  | Measurement       | Refining Skills in Regression          | 4  |
|     | and scaling       | Analysis                               |    |
|     | technique         | Advanced Multivariate Analysis         |    |
| 9   | Sampling errors   | Theory of errors                       | 2  |
| ).  | Sumpting cirors   | Frors and                              | 2  |
|     |                   | residuals precision measure of         |    |
|     |                   | precision Probable error of            |    |
|     |                   | function rejection of observation.     |    |
| 10  | Experimental      | Design of experiments completely       | 4  |
| 10. | designs           | randomized and random block            | •  |
|     |                   | design factorial experiments           |    |
|     |                   | missing plot technique Modeling        |    |
|     |                   | missing plot technique, Modeling       |    |
|     | ~                 | and simulation                         |    |
| 11. | Computer          | Electronic data processing,            | 6  |
|     | aided statistical | operating system-common                |    |
|     | analysis          | software available, Internet           |    |
|     |                   | applications, database and             |    |
|     |                   | bioinformatics. Use of statistical     |    |
|     |                   | software packages-SPSS                 |    |
| 12. | Scientific        | Interpretation, technical Report       | 7  |
|     | writing and       | writing and presentation               |    |
|     | publication       | (oral/poster), Overhead projector      |    |
|     |                   | power point slides, Journal selection, |    |
|     |                   | Impact factor                          |    |
|     |                   | Total hrs                              | 48 |

The course will be covered through lectures supported by tutorials. Apart from the discussion on the topics in lectures, tutorials classes in the form of question & answer session will be given to overcome the difficulties of the students regarding the course. There will be two class tests during the semester and a surprise test in tutorials.

#### **Evaluation Scheme (Theory)**

| Examination              | Duration      | Marks |
|--------------------------|---------------|-------|
| Internal Exam I          | 45 min.       | 15    |
| Internal Exam II         | 45 min.       | 15    |
| Teachers Assessment      |               | 10    |
| End Semester Examination | 2 Hrs 30 min. | 60    |
| Total                    |               | 100   |

#### **REFERENCE BOOKS**

- Best J.W. & J.V. Kahn.Research in education 20<sup>th</sup> edin.Pearson Education Inc,new Jersey 2006.
- Kothari C.R. Research Methodology: Methods 7 Techniques 2<sup>nd</sup> Edn, New ahe International Publisher, New Delhi. 1990.

| Semester III   |                                                                                                                                                                 |    |   |    |                 |                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|-----------------|----------------|
| Course<br>Code | Course                                                                                                                                                          | L  | Т | Р  | Contact<br>Hrs. | Credit<br>Hrs. |
| MS301          | Genetic Engineering                                                                                                                                             | 3  | 1 | -  | 4               | 4              |
| MS302          | Enzymology and<br>Enzyme Technology                                                                                                                             | 3  | 1 | 4  | 8               | 6              |
| MS303          | Bioprocess<br>Technology and<br>Bioengineering                                                                                                                  | 3  | 1 | 4  | 7               | 6              |
| MS304          | Biosafety, Bioethics<br>and IPR                                                                                                                                 | 2  | - | -  | 2               | 2              |
| MS305          | Elective Course:<br>Biopharmaceuticals<br>Food Biotechnology<br>Environmental<br>Biotechnology<br>Clinical Research<br>Molecular modeling<br>and Drug designing | 3  | - | 4  | 7               | 5              |
|                | TOTAL                                                                                                                                                           | 14 | 3 | 12 | 28              | 23             |

| Title of the Course: Genetic Engineering |   |   |   |   |     |
|------------------------------------------|---|---|---|---|-----|
| Course code: MS-301                      | L | Т | Р | Η | r C |
| Marks: 100                               | 3 | 1 | 0 | 4 | 4   |

#### **Objective**

To familiarize the student with emerging field of biotechnology i.e. Recombinant DNA Technology As well as create understanding and expertise in wet lab techniques in genetic engineering.

С

#### Learning outcome

At the end of the course, the students will have sufficient scientific understanding of the subject and have good knowledge of application of Recombinant DNA techniques in Life Sciences Research.

#### **Prerequisites**

Knowledge of molecular biology is sufficient.

| Sr. | Topics                             | Detail syllabus                                                                                                                                                                                                                                                                                                                                            | Hrs |
|-----|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| No. |                                    |                                                                                                                                                                                                                                                                                                                                                            |     |
| 1   | Introduction                       | Landmarks in Molecular biology and<br>biotechnology,<br>Advantages of using microorganisms,<br>What is genetic engineering and<br>recombinant DNA technology,<br>Control of gene expression and gene<br>complexity in prokaryotes and<br>eukaryotes.,<br>Genetic engineering in <i>Ecoli</i> and other<br>prokaryotes, yeast, fungi and<br>mammalian cells | 10  |
| 2   | Tools in<br>genetic<br>engineering | Enzymes- DNA polymerases,<br>restriction endonucleases, ligases,<br>reverse transcriptases, nucleases,<br>terminal transferases, phosphatases etc.<br>Cloning vectors-plasmids,<br>bacteriophage<br>vectors,cosmids,phagemids,vectors for<br>plant and animal cells, shuttle vectors,<br>YAC vectors, expression vectors etc.                              | 6   |

#### **Course Description**

| 3 | Gene<br>cloning<br>Recombinan<br>t DNA<br>techniques    | Isolation and purification of DNA<br>(genomic, plasmid) and RNA,,<br>Isolation of gene of interest- restriction<br>digestion, electrophoresis, blotting,,<br>Cutting and joining of DNA,,<br>Methods of gene transfer in<br>prokaryotic and eukaryotic cells,<br>Recombinant selection and screening<br>methods- genetic, immunochemical,<br>South-western analysis, nucleic acid<br>hybridization, HART, HRT,<br>Expression of cloned DNA molecules<br>and maximization of expression,<br>Cloning strategies- genomic DNA<br>libraries, cDNA libraries, chromosome<br>walking and jumping.<br>Blotting Techniques,<br>Autoradiography,<br>Hybridization,<br>Molecular Probes and Nucleic acid<br>labeling ,<br>DNA sequencing,<br>PCR,<br>Mutagenesis,<br>Analysis of gene expression ,<br>DNA fingerprinting, RAPD, RFLP, | 10  |
|---|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5 | Applications<br>of<br>Recombinan<br>t DNA<br>technology |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02  |
| 6 | Protein                                                 | Two-hybrid and other two component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04  |
|   | interaction                                             | systems, Detection using GST fusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|   | technology                                              | protein, co-immunoprecipitation, FRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   |                                                         | etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7 |
| 7 | Gene                                                    | In vivo approach, ex-vivo approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02  |
| 0 | therapy                                                 | Antisense therapy, Transgenics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02  |
| 8 | Genetic                                                 | Prenatal diagnosis,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02  |

|                | disorders-<br>Diagnosis<br>and<br>screening | Single nucleotide polymorphisms,<br>DNA microarrays,<br>Future strategies. |           |
|----------------|---------------------------------------------|----------------------------------------------------------------------------|-----------|
| 9              | The Human<br>Genome<br>Project              | The Human Genome Project details.                                          | 02        |
| Total Lectures |                                             |                                                                            | <b>48</b> |

The course will be covered through lectures supported by tutorials, PowerPoint presentations, research articles and practical. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

#### **Evaluation Scheme (Theory)**

| Examination              | Duration      | Marks |
|--------------------------|---------------|-------|
| Internal Exam I          | 45 min.       | 15    |
| Internal Exam II         | 45 min.       | 15    |
| Teachers assessment      |               | 10    |
| End Semester Examination | 2 Hrs 30 min. | 60    |
| Total                    |               | 100   |

#### **Books Recommended:**

- Biotechnology-Fundamentals and Applications- SS Purohit
- Principles of gene manipulation-Old and Primrose
- Gene Biotechnology-Jogdand
- Molecular Biology-Twyman
- Principles of genetics-Klug
- Molecular Biology of the gene-Watson
- Molecular Cloning (Vol 1,2,3)-Sambrook and Russell

Title of the Course: Enzymology & Enzyme TechnologyCourse code: MS-302LTPHrCMarks: 15031486

#### **Objective:**

The objective of the course is to familiarize the student with enzymes, their kinetics, purification and applications in different fields

#### Learning outcome

At the end of the course, the students will have sufficient scientific understanding of the enzymalogy. This knowledge would be applicable in different industries

#### Prerequisites

This is an introductory course in enzymology. School level knowledge of organic chemistry and Biology is sufficient. There are no prerequisites.

| Sr.<br>No | Topics        | Detail syllabus                                      | Hrs |
|-----------|---------------|------------------------------------------------------|-----|
| 1         | Enzymes       | Enzyme: Enzyme classification,<br>enzyme properties. | 6   |
|           |               | Coenzymes and Cofactors, and their roles.            |     |
|           |               | Enzyme substrate interactions.                       |     |
|           |               | Active site identification - Chemical                |     |
|           |               | modification of active site amino                    |     |
|           |               | acids.                                               |     |
| 2         | Enzyme        | Enzyme kinetics (Michaelis Menten                    | 12  |
|           | Kinetics &    | equation).                                           |     |
|           | regulation of | Inhibition-Enzyme, types and their                   |     |
|           | Enzyme action | kinetics.                                            |     |
|           | -             | Mechanism of enzyme catalysis with                   |     |
|           |               | reference to chymotrypsin, lysozyme,                 |     |
|           |               | metalloenzyme and the role of metals                 |     |
|           |               | in catalysis with reference to                       |     |
|           |               | carboxypeptidases.                                   |     |
|           |               | Allosteric Enzymes. Ribozymes.                       |     |

#### **Course Description**

| 3 | Enzyme          | Source, methods of purification and     | 06 |
|---|-----------------|-----------------------------------------|----|
|   | purification    | criteria (amylases, lipases, proteases, |    |
|   |                 | renin, etc.)                            |    |
|   |                 | Role of immobilized enzymes.            |    |
| 4 | Applications of | Food processing                         | 10 |
|   | enzymes in:     | Medicine                                |    |
|   |                 | Diagnostics                             |    |
|   |                 | Production of new compounds             |    |
|   |                 | As research tools (ELISA method)        |    |
|   |                 | immobilized enzymes.                    |    |
|   |                 | Leather industry.                       |    |
|   |                 | Textile industry.                       |    |
| 5 | Enzyme          | Enzymes as biosensors,                  | 10 |
|   | technology      | enzyme engineering,                     |    |
|   |                 | artificial enzymes,                     |    |
|   |                 | future prospects for enzyme             |    |
|   |                 | technology,                             |    |
|   |                 | recent advances in enzyme               |    |
|   |                 | technology                              |    |
| 6 | Specific        | Thermozymes,Cold-adapted                |    |
|   | enzymes         | enzymes,Ribozymes,Hybrid                |    |
|   | &Their          | enzymes,Diagnostic                      |    |
|   | applications    | enzymes, Therapeutic enzymes            |    |
|   |                 | Total Lectures                          | 45 |

Total

The course will be covered through lectures supported by tutorials. In tutorials would discuss different applications of enezymes and methods of their extractions and purification. Students would be given assignments in the form of questions. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

Marks

15

15

10

60 **100** 

# Evaluation Scheme (Theory)ExaminationDurationInternal Exam I45 min.Internal Exam II45 min.Teachers assessment45 min.End Semester Examination2 Hrs 30 min.

#### **Books recommended:**

- Fundamentals of Biochemistry by A. C. Deb.
- Introductory Practical Biochemistry by S. K. Sawhney, Randhir Singh.
- Biochemistry by Stryer.
- Biochemistry by Mathews.
- Biochemistry by Zubay.
- Biochemistry by Champ.
- Principles of Biochemistry by Nelson and Cox.
- Biochemistry by Rastogy.
- Text book of Enzymology by Nicolas Price and Lewis Stevens, 3<sup>rd</sup> edition, [Publishers Oxford University Press]

#### **Practicals in Enzymology** Laboratory Description

| Sr. | Topics                                                | No. of   |
|-----|-------------------------------------------------------|----------|
| No. |                                                       | Lectures |
| 1   | Estimation of specific activity of salivary α-        | 04       |
|     | amylase.                                              |          |
| 2   | Estimation of specific activity of fungal amylase     | 04       |
|     | from Neozyme tablets. Comparison of activities of     |          |
|     | salivary & fungal amylase.                            |          |
| 3   | Estimation of specific activity of salivary $\beta$ - | 04       |
|     | amylase from sweet potato.                            |          |
| 4   | Determination of acrolic point of amylases.           | 04       |
| 5   | Estimation of specific activity of acid phosphatase   | 04       |
|     | from germinated pea seeds.                            |          |
| 6   | Estimation of specific activity of alkaline           | 04       |
|     | phosphatase from germinated Bengal gram seeds         |          |
| 7   | Estimation of specific activity of protease           | 04       |
|     | (Neozyme tablets)                                     |          |
| 8   | Determination of proteolytic activity from serratia   | 04       |
|     | peptidase                                             |          |
| 9   | Deternmination of optimum PH & temperature of         | 04       |
|     | amylases.                                             |          |

#### Methodology

The course will be covered through practical work supported by Labotatory work. Students would be made to achieve skills in practical aspects regarding enzymes. They would be taught how to correlate the thetotical & practical aspects of enzymology & metabolic engineering.

#### **Evaluation Scheme**

| Examination-Lab           |      |    |
|---------------------------|------|----|
| Minor test-I              | 1 hr | 10 |
| Lab report and attendance |      | 10 |
| Final                     | 3 hr | 30 |
| Total                     |      | 50 |

| Title of the Course: Bioprocess Technology | & Bioengineering |
|--------------------------------------------|------------------|
| Course Code: MS-303                        | L T P Hr C       |
| Marks: 150                                 | 31486            |

#### **Objective:**

The objective of the course is to create general understanding amongst the students in the subject of Industrial Biotechnology through in-depth lectures & laboratory practicals. The objective of the course is to understand them a general overview, concepts and basic principles in the subject of Industrial Biotechnology with emphasis on how to apply the knowledge in bio processing engineering.

#### Learning outcome:

At the end of the semester, it is expected that students understood the basic principles of engineering knowledge to solve a critical problem. It is expected that they will be more confident to use the knowledge in pursuing Bioprocess knowledge in industrial biotechnological application.

#### **Pre-requisites**:

This is an introductory level course. Students are expected to have an understanding of introductory knowledge in Physics, Chemistry and Biology.

| Sr. | Topics           | Detail syllabus                   | No. of   |
|-----|------------------|-----------------------------------|----------|
| No. |                  |                                   | lectures |
| 1   | Introduction     | The component parts of a          | 4        |
|     |                  | fermentation process Type of      |          |
|     |                  | Bioreactors                       |          |
| 2   | Kinetics of      | Kinetics of growth in batch       | 5        |
|     | microbial growth | culture                           |          |
|     |                  | The ideal plug flow reactor       |          |
|     |                  | The ideal continuous attired tank |          |
|     |                  | reactor                           |          |
|     |                  | Fed-batch culture                 |          |
| 3   | Measurement and  | Feed-back control Controller      | 4        |
|     | control of       | characteristics                   |          |

#### **Course Description**

|    | Bioprocess                   |                                  |    |
|----|------------------------------|----------------------------------|----|
| 4  | Starilization                | Vination of call death           | 2  |
| 4  | Sterinzation<br>Madia dagian | Kinetics of cen death            | 2  |
| 3  | Media design                 |                                  | 3  |
| 6  | Isolation,                   | Isolation techniques             | 5  |
|    | preservation and             | Methods of preservation of       |    |
|    | maintenance of               | culture                          |    |
|    | industrial                   |                                  |    |
|    | microorganisms               |                                  |    |
| 7  | Downstream                   | Removal of microbial cells and   | 8  |
|    | processing                   | solid matter                     |    |
|    |                              | Characterization of fermentation |    |
|    |                              | broths                           |    |
|    |                              | Sedimentation                    |    |
|    |                              | Centrifugation                   |    |
|    |                              | Filtration                       |    |
|    |                              | Precipitation                    |    |
|    |                              | Liquid-liquid extraction         |    |
|    |                              | Chromatography                   |    |
|    |                              | Membrane process                 |    |
|    |                              | Drying and crystallization       |    |
| 8  | Whole cell                   | Advantages of whole cell         | 4  |
|    | immobilization and           | immobilization                   |    |
|    | its industrial               | Methods of immobilizing cells    |    |
|    | application                  | Biological films                 |    |
| 9  | Industrial                   | Production of ethanol production | 6  |
|    | production of                | of organic solvents              |    |
|    | chemicals                    | Production of organic acids      |    |
|    |                              | Production of amino acids        |    |
|    |                              | Production of antibiotics        |    |
| 10 | Bioleaching                  | Types of leaching                | 4  |
|    |                              | Total lecture                    | 45 |

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

| Evaluation Scheme (Theory) |               |       |  |
|----------------------------|---------------|-------|--|
| Examination                | Duration      | Marks |  |
| Internal Exam I            | 45 min.       | 15    |  |
| Internal Exam II           | 45 min.       | 15    |  |
| Teachers assessment        |               | 10    |  |
| End Semester Examination   | 2 Hrs 30 min. | 60    |  |
| Total                      |               | 100   |  |

### **Books Recommended**

- Principles of fermentation technology-Stanbury and Whitaker Industrial microbiology-Casida Industrial microbiology-Patel.

#### Practical's in Bioprocess Technology and Bioengineering

#### **Course Description**

| Sr. | Laboratory exercise                                   | Hrs |
|-----|-------------------------------------------------------|-----|
| No  |                                                       |     |
| •   |                                                       |     |
| 1   | Screening and improvement of cultures.                | 4   |
| 2   | Preservation of Industrial cultures.                  | 4   |
| 3   | Inoculum development techniques.                      | 4   |
| 4   | Media preparation and selection techniques.           | 4   |
| 5   | Small scale submerged fermentation.                   | 4   |
| 6   | Small scale solid state fermentation                  | 4   |
| 7   | Instrumentation control for small scale Bioreactor    | 4   |
| 8   | Scale up/down studies                                 | 4   |
| 9   | Fermentation design and finding out different factors | 4   |
|     | affecting fermentation process.                       |     |
| 10  | Downstream processing techniques                      | 4   |
| 11  | Production and Immobilization of industrial enzymes   | 4   |

#### Methodology

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

#### **Evaluation Methodology theory**

| Minor test-I              | 1 hr | 5  |
|---------------------------|------|----|
| Lab report and attendance |      | 5  |
| Final                     | 3 hr | 40 |
| Total                     |      | 50 |

#### **Books Recommended**

Principles of fermentation technology by Whitekar Biochemical engg. By Bailey &Ollis Bioprocess engg. By Dorau. Bioprocess engg. By shular&kargi.

# Title of the Course: Biosafety, Bioethics and Intellectual PropertyRightsCourse code: MS-304LTPHrC

Course code: MS-304 Marks: 100 L T P Hr C 2 0 0 2 2

#### **Objective of the course:**

The objective of the course is to make students learn about the legal, safety and public policy issues raised due to the rapid progress in Biotechnology and development of new products. The biotechnology students suppose to understand and follow the regulatory framework important for the product safety and benefit for the society. The students are given case history to discuss and express their views.

#### **Learning Outcome**

At the end of the course, it is expected that students have understood the basic issues of Biosafety, Bioethics and IPR.IT is expected that they will be more confidant to practice and implement all these policies in their future endeavor.

#### Prerequisites

This is an advance level course. Students must have an understanding of introductory undergraduate level course such as chemistry, biology, microbiology, plant and animal biology and molecular biology. **Course Description** 

#### Seq. Topic Description Hrs No 1 **Biosafety** Introduction and Development of 18 **Biosafety Practices** Principles General lab requirements Definitions and Biosafety levels: 1,2,3,4 Summerv Biological safety cabinets: centrifuges, Shipment of biological specimens, Biological waste management, Decontamination, Biosafety manuals, Medical surveillance, Emergency response

55

| 2 | Bioethics  | History and Introduction              | 16 |
|---|------------|---------------------------------------|----|
| 4 | Dioetines  | Ethics and genetic engineering        | 10 |
|   |            | Genetic Privacy                       |    |
|   |            | Patent of genes                       |    |
|   |            | Human races                           |    |
|   |            | Trading Human Life                    |    |
|   |            | Human Cloning                         |    |
|   |            | Stem Cells                            |    |
|   |            | Fugenics                              |    |
|   |            | Biotechnology and Christian faith     |    |
|   |            | Human genome and religious            |    |
|   |            | considerations                        |    |
|   |            | Case Studies                          |    |
|   |            | Final Considerations                  |    |
| 3 | Intellectu | Introduction                          | 14 |
| 5 | al         | Types of Intellectual Property Rights | 14 |
|   | Property   | Plant and Animal growers rights       |    |
|   | Rights     | Patents                               |    |
|   | Rights     | Trade secretes Convrights Trademarks  |    |
|   |            | IPR and plant genetic recourses       |    |
|   |            | GATT and TRIPS and Dunkels Draft      |    |
|   |            | Patenting of biological materials     |    |
|   |            | International conventions and         |    |
|   |            | cooperation                           |    |
|   |            | Current Issues                        |    |
|   |            | Patents for higher animal and higher  |    |
|   |            | plants                                |    |
|   |            | Patenting of transgenic organisms and |    |
|   |            | isolated genes                        |    |
|   |            | Patenting of genes and DNA sequences  |    |
|   |            | Indian scenario.                      |    |
|   | ſ          | Total number of Lectures              | 48 |

The course will be covered through lectures. The students will be given problems and case histories to discuss and clear their problems. The students will be evaluated based on two class tests, lecture and lab attendance, class participation, write up and quizzes.

| <b>Evaluation Scheme (Theory)</b> |               |       |
|-----------------------------------|---------------|-------|
| Examination                       | Duration      | Marks |
| Internal Exam I                   | 45 min.       | 15    |
| Internal Exam II                  | 45 min.       | 15    |
| Teachers assessment               |               | 10    |
| End Semester Examination          | 2 Hrs 30 min. | 60    |
| Total                             |               | 100   |

#### **Books recommended:**

- 1 Understanding Biotechnology by Borem
- 2 Biotechnology an Introduction: Barnum S.R.
- 3 Biosafety and Bioethics : Joshi
- 4 Introduction to Bioethics : Bryant
- 5 Legal Aspects of Business : Pathak
- 6 Intellectual Property Rights : Raju
- 7 Patent Law : Narayan
- 8 Intellectual Property Management : Jungham

| Elective course:                        |               |
|-----------------------------------------|---------------|
| Title of the Course: Food Biotechnology | Total Hrs: 48 |
| Course code: MS-305A                    | L T P Hr C    |
| Marks: 150                              | 3 0 4 7 5     |

#### **Objective of the course:**

The objective of the course is to familiarize the students with advanced research area and basic concept in Food Biotechnology

#### **Learning Outcome**

At the end of the course, the students will have sufficient scientific understanding of different types of biotechnological methods to improve the value of different food and new techniques used in Food Biotechnology.

#### **Prerequisites**

Since the course is very advance in science, student must know about the new biotechnological and molecular genetics method which to apply in food. Student must have background with Biotechnological aspects and molecular genetics.

#### **Course Description**

| Sr. | Торіс                                  | Description                                                                                                                                     | Hrs |
|-----|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| No  |                                        |                                                                                                                                                 |     |
| 1   | Introduction to<br>Food                | Biotechnology application to food<br>stuffs                                                                                                     | 02  |
|     | Biotechnology                          | Career in Food Biotechnology<br>Activities of Food Biotechnologist                                                                              |     |
| 2   | Biotechnology<br>in Food<br>Processing | Unit Operation in Food Processing<br>Quality Factors in Preprocessed<br>Food<br>Food deterioration and its control<br>Rheology of Food products | 14  |
| 3   | Molecular<br>methods and<br>Production | Methods And application of<br>molecular cloning in foods<br>Developmental technique for new<br>plant verities                                   | 06  |

| 4    | Application of<br>Biotechnology<br>to Food<br>products           | Microbial role in food products<br>Yeast, Bacterial and other<br>microorganisms based process and<br>products      | 16 |  |
|------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----|--|
| 5    | Modification<br>and<br>Bioconversion<br>of food raw<br>materials | Bioconversion of whey, molasses<br>and starch and other food waste for<br>value addition                           | 06 |  |
| 6    | Regulatory and<br>Social aspects<br>of Food<br>Biotechnology     | Modern Biotechnological regulatory<br>aspects in food industries<br>Biotechnology and Food : A Social<br>Appraisal | 04 |  |
| Tota | Total number of Lectures                                         |                                                                                                                    |    |  |

The course would be taught through lectures, demonstrations and practical.

| <b>Evaluation Scheme (Theory)</b> |               |       |
|-----------------------------------|---------------|-------|
| Examination                       | Duration      | Marks |
| Internal Exam I                   | 45 min.       | 15    |
| Internal Exam II                  | 45 min.       | 15    |
| Teachers assessment               |               | 10    |
| End Semester Examination          | 2 Hrs 30 min. | 60    |
| Total                             |               | 100   |

#### **Books recommended:**

- 1 Food Biotechnology: Dietrich Knorr,Inc.New York and Basel
- 2 Food Science: Potter N.N. CBS publication
- 3 Handbook of Food Biotechnology : NIIR Board of Consultants and Engg., NIIR
- 4 Food Science and Technology: B.S.Khattar,Daya Publishing House,Delhi
- 5 Biotechnology: B.D.Singh, Kalyani Publishers
- 6 Food Microbiology: Frazier

#### **Practicals in Food Biotechnology**

#### **Laboratory Description**

| Sr. | Topics                                                   | Hrs |
|-----|----------------------------------------------------------|-----|
| No. |                                                          |     |
| 1   | Determination of quality of milk by MBRT test            | 04  |
| 2   | Detection of number of bacteria by SPC method            | 04  |
| 3   | Microscopic determination of microbial flora from        | 04  |
|     | yoghurt and lactic acid determination                    |     |
| 4   | Microbial examination of food                            | 04  |
| 5   | Detection of pathogenic bacteria from food samples       | 04  |
| 6   | Determination of milk clotting enzyme activity.          | 04  |
| 7   | Preparation of Cheese                                    | 04  |
| 8   | To determine mineral salt concentrations in fruit juices | 04  |
|     | by using flame photometer                                |     |
| 9   | To check the food efficacy testing of chemical           | 04  |
|     | preservatives                                            |     |
| 10  | Preparation of Bread                                     | 04  |

#### Methodology

The course will be covered through practical work supported by field study. Students would be made to gain scientific data information using various food products resources. They would be taught how to improve quality and useful microbial flora to food products.

#### **Evaluation Scheme**

| Minor test-I              | 1 hr | 10 |
|---------------------------|------|----|
| Lab report and attendance |      | 10 |
| Final                     | 3 hr | 30 |
| Total                     |      | 50 |

#### **Books Recommended:**

Practical in Food Microbiology Practical in Microbiology : Kannan

| <b>Title of the Course: Environmental Biotechnolo</b> | gy |   |   |    |   |
|-------------------------------------------------------|----|---|---|----|---|
| Course code: MS-305B                                  | L  | Т | Р | Hr | С |
| Marks: 150                                            | 3  | 0 | 4 | 7  | 5 |

#### **Objective of the course:**

The objective of the course is to familiarize the students with advanced research area and basic concept in Environmental Biotechnology

#### **Learning Outcome**

At the end of the course, the students will have sufficient scientific understanding of different types of biotechnological methods to improve environment value and new techniques used in Environmental Biotechnology.

#### **Prerequisites**

Since the course is very basic in science, student must know about the new biotechnological methods which to apply in environment. Student must have background with Biotechnological aspects and molecular genetics.

| Sr. | Торіс            | Description                         | Hrs |
|-----|------------------|-------------------------------------|-----|
| NO  |                  |                                     |     |
| 1   | Environment      | Physical Environment                | 03  |
|     |                  | Man induced impact on               |     |
|     |                  | environment                         |     |
|     |                  | Global warming                      |     |
|     |                  | Depletion of ozone layer            |     |
| 2   | Environmental    | Types of Pollution, Water pollution | 06  |
|     | Pollution        | Soil Pollution, Methods of          |     |
|     |                  | Pollution Measurement               |     |
|     |                  | Environment Management              |     |
| 4   | Global water     | Measurement of water pollution      | 06  |
|     | distribution and | Sources of water pollution          |     |
|     | management       | Waste water collection              |     |
| 5   | Microbiology of  | Aerobic treatment                   | 06  |
|     | waste water      | Anaerobic treatment                 |     |
|     | treatment        | Antibiotics in waste water          |     |

#### **Course Description**

| 6                        | Microbiology of | Xenobiotics in environment        | 06 |
|--------------------------|-----------------|-----------------------------------|----|
|                          | degradation of  | Decay behavior of xenobiotics     |    |
|                          | xenobiotics     |                                   |    |
| 7                        | Bioremediation  | Bioremediation of contaminated    | 03 |
|                          |                 | soil and waste water Role of      |    |
|                          |                 | genetic engineering               |    |
| 8                        | Solid waste     | Sources                           | 06 |
|                          | management      | Composting ,vermiculture, methane |    |
|                          |                 | production                        |    |
| 9                        | Global          | Ozone depletion                   | 06 |
|                          | Environmental   | Global warming                    |    |
|                          | Problems        | Acid rain                         |    |
| Total number of Lectures |                 |                                   | 48 |

The course would be taught through lectures, demonstrations and practical.

#### **Evaluation Scheme (Theory)**

| Examination              | Duration      | Marks |
|--------------------------|---------------|-------|
| Internal Exam I          | 45 min.       | 15    |
| Internal Exam II         | 45 min.       | 15    |
| Teachers assessment      |               | 10    |
| End Semester Examination | 2 Hrs 30 min. | 60    |
| Total                    |               | 100   |

#### **Books recommended:**

- Textbook of Biotechnology-H.K.Das
- Textbook of Biotechnology-Purohit
- Biotechnology-Ignacimuthu

# Title of the Course: Molecular Modeling and Drug DesigningCourse code: MS-305CL T P Hr CMarks: 1503 0 4 7 5

#### Objective

- To create general understanding regarding basic principles involved in modern medicinal/structural chemistry systems.
- To familiarize the student with basic concepts in molecular modeling as: how to build the molecule, how to find out the coordinates of the molecule, how to use the programs that are available in graphics designing.
- To familiarize students with concepts in molecular mechanics and dynamics and to study the energy minimization algorithms
- To introduce them to concepts in quantum chemistry and methods for calculating the energies, that are required in energy minimization and docking studies
- To understand the methodology involved in structure based drug designing, and enzyme inhibition strategies

#### Learning outcome

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in classical and modern molecular modeling and drug designing, concepts and laws applicable to quantum-mechanics particles. This would enable him to understand the entire concepts in computerized drug designing and interaction concepts

#### **Prerequisites:-**

This is an introductory course for the students who want to understand the concepts in molecular modeling and drug designing and should make a compulsory subject

# **Course Description :**

| Sr. | Topics        | Detail syllabus                     | No. of   |
|-----|---------------|-------------------------------------|----------|
| No. | -             |                                     | Lectures |
| 1   | Introduction  | Cartesian, and crystal coordinate   | 08       |
|     | to molecular  | system,                             |          |
|     | graphics:     | Reducing molecular coordinates to   |          |
|     |               | fit Computer monitor                |          |
|     |               | Basic principle of molecular        |          |
|     |               | graphics and structure              |          |
|     |               | visualization                       |          |
|     |               | Small molecular structural data     |          |
|     |               | bases (Chembridge data base)        |          |
|     |               | Protein structural data base (PDB)  |          |
|     |               | Different molecular graphics        |          |
|     |               | packages, Graphics Programs:        |          |
|     |               | HAMOG, RASMOL, MOLMOL               |          |
| 2   | Building of   | Building of small molecules         | 10       |
|     | small         | Internal and cylindrical polar co-  |          |
|     | molecules     | ordinate system                     |          |
|     |               | Methods used in building small      |          |
|     |               | molecules using crystal, Cartesian, |          |
|     |               | polar and chemical internal         |          |
|     |               | coordinates.                        |          |
|     |               | Building of Biopolymers DNA &       |          |
|     |               | oligopeptides in different          |          |
|     |               | secondary structure                 |          |
| 3   | Optimization  | Energy minimization by              | 10       |
|     | of geometries | systematic search method            |          |
|     | of small      | Plotting conformation energy        |          |
|     | molecules:    | contours (Ramachandran plot),       |          |
|     |               | and finding out minimum energy      |          |
|     |               | conformation                        |          |
|     |               | Gradient based Energy               |          |
|     |               | minimization methods                |          |
|     |               | Molecular mechanics approach        |          |
|     |               | Molecular Dynamics method           |          |
|     |               | Monte Carlo method                  |          |
|     |               | Genetic algorithm                   |          |

| Total Lectures |               |                                   | 36 |
|----------------|---------------|-----------------------------------|----|
|                |               | based drug design enzyme          |    |
|                | designing     | novel drug designing, structure   |    |
| 5              | Drug          | Pharmacophore identification and  | 06 |
|                |               | Quantum chemical indices          |    |
|                |               | small molecules                   |    |
|                |               | Optimization of geometries of     |    |
|                |               | Molecular electrostatic potential |    |
|                |               | Different MO methods              |    |
|                |               | Hartree- Fock Method              |    |
|                | -1            | molecule                          |    |
|                | optimization: | Schrödinger equation for a        |    |
|                | geometry      | electron atom                     |    |
|                | methods for   | Schrödinger equation for a multi- |    |
|                | chemical      | mechanics                         |    |
| -              | Quantum       | Basic Formalism in quantum        | 10 |
| 4              | Use of        | Schrödinger equation              | 10 |

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

| Evaluation Scheme (Theory) |               |       |
|----------------------------|---------------|-------|
| Examination                | Duration      | Marks |
| Internal Exam I            | 45 min.       | 15    |
| Internal Exam II           | 45 min.       | 15    |
| Teachers assessment        |               | 10    |
| End Semester Examination   | 2 Hrs 30 min. | 60    |
| Total                      |               | 100   |

#### **Books recommended:**

- Molecular Modeling, Holtje and Folkers G Weinheim New York
- Essentials of Drug designing, V. Kothekar Dhruv Publications 2005
- Molecular modeling: principles and applications, Leach.A.R
- Molecular modelling and drug design, Andrew Vinter A.and Gardner, M Boca Raton: CRC Press, 1994

# Practicals in Molecular Modeling and Drug Designing

| Sr. | Laboratory Exercise                                                 | Hrs. |
|-----|---------------------------------------------------------------------|------|
| No. |                                                                     |      |
| 1   | BUILDING MOLECULES                                                  | 4    |
| 2   | glycine                                                             | 4    |
| 3   | glycine-glycine                                                     | 4    |
| 4   | alanine                                                             | 4    |
| 5   | glycine-alanine                                                     | 4    |
| 6   | phenylalanine                                                       | 4    |
| 7   | benzene                                                             | 4    |
| 8   | SPDBV                                                               | 4    |
| 9   | calculate the electrostatic potential using spdbv software          | 4    |
| 10  | analysis of Ramachandran plot using spdbv software                  | 4    |
| 11  | HYPERCHEM                                                           | 4    |
| 12  | Use of molecular modeling software HYPERCHEM                        | 4    |
|     | for building small molecules.                                       |      |
| 13  | Computation of quantum chemical parameters using                    | 4    |
| 1.4 | HYPERCHEM                                                           |      |
| 14  | Creating database for small molecular indices using<br>HYPERCHEM    | 4    |
| 15  | MOE                                                                 | 4    |
| 16  | Use of molecular modeling software MOE for building small molecules | 4    |
| 17  | Use of molecular modeling software MOE for building                 | 4    |
|     | oligopeptides and oligonucleotides                                  | 4    |
| 18  | Computation of force field parameters using MOE                     | 4    |
| 19  | Computation of conformation map of a small molecule                 | 4    |
|     | using MOE                                                           |      |
| 20  | Optimization of geometries of small molecules using                 | 4    |
|     | MOE                                                                 |      |
| 21  | Creating database for small molecular indices using                 | 4    |
|     | MOE                                                                 |      |

## **Evaluation scheme Practical training**

| Total                             |         | 50 |  |
|-----------------------------------|---------|----|--|
| Major test at the end of semester | 3 hours | 25 |  |
| Continuous Assessment             |         | 10 |  |
| Minor test 1                      | 1 hour  | 15 |  |

| Semester IV |            |  |
|-------------|------------|--|
| PROJECT     | 25 Credits |  |