

DR. D. Y. PATIL VIDYAPEETH

PIMPRI, PUNE – 411 018

DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE

TATHAWADE, PUNE

SYLLABUS FOR M. TECH (INTEGRATED) BIOTECHNOLOGY (BATCH 2017-18)

DR. D.Y. PATIL VIDYAPEETH, PUNE DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE, TATHAWADE, PUNE

COURSE STRUCTURE FOR M. TECH (INTEGRATED) BIOTECHNOLOG	ſY
--	----

SEMESTER I								
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks	
BS 101	Physics	3	0	2	5	4	150	
BS 102	Organic chemistry		0	4	7	5	200	
BS 103	Mathematics	3	1	0	4	4	100	
PT 101	Introduction to Electronics &	2	0	2	5	4	150	
DI IUI	Instrumentation Engineering	5 0 2		2	5	4	150	
BI 101	Introduction to Computers & Computer	3	2 0		7	5	200	
DI IOI	Organization	5	U	-	/	5	200	
HU 101	Communication Skills	1	2	0	3	3	100	
HU 102	Disaster Management	2	0	0	2	2	100	
	Total	18	3	12	33	27	1000	
BS - I	Basic Sciences, HU - Humanity, BT - Biotect	hnolog	y, BI	- Bioi	inform	atics		
	SEMESTER II							
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks	
BS 201	Physical Chemistry	3	1	0	4	4	100	
BS 202	Introduction to Bio-molecules		0	4	7	5	200	
BS 203	Biostatistics		1	0	4	4	100	
BT 201	Engineering Mechanics	3	0	2	5	4	150	
BI 201	C Programming		0	4	7	5	200	
BS 204 Environmental Sciences		3	0	2	5	4	150	
Total			2	12	32	26	900	
	SEMESTER III			-	-			
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks	
BS 301	Analytical Techniques	3	0	4	7	5	200	
BS 302	Cell Biology	3	0	2	5	4	150	
BS 303	Microbiology	3	0	4	7	5	200	
BS 304	Genetics	3	1	2	6	5	150	
BS 305	Mammalian Physiology	3	1	0	4	4	100	
BT 301	Plant Physiology	3	1	0	4	4	100	
	Total	18	3	12	33	27	900	
	SEMESTER IV		•			•		
Course Code	Course Name	L	Т	P	Hr	Cr	Marks	
BT 401	Molecular Biology-I	3	0	4	7	5	200	
BT 402	Metabolism	3	1	0	4	4	100	
BT 403	Animal Tissue Cultures	3	0	2	5	4	150	
BT 404	Plant Tissue Culture	3	0	2	5	4	150	
BT 405	Immunology	3	0	2	5	4	150	
BI 301	Concepts in Bioinformatics	3	0	4	7	5	200	
Total			4	14	33	26	950	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) SEMESTER V

Course Code Course Name			Т	Р	Hr	Cr	Marks		
BT 501	Molecular Biology-II	3	0	4	7	5	200		
BT 502	rDNA Technology	3	1	0	4	4	100		
BT 302	Enzymology & Enzyme Technology	3	0	4	7	5	200		
BT 503	Basic Pharmacology and Toxicology	3	1	0	4	4	100		
BT 504	Fermentation Technology	3	0	4	7	5	200		
BT 506 / BT 507	Elective-I	3	0	4	7	5	200		
	Total	18	2	16	36	28	1000		
Electiv	e I (BT 506 : Food Biotechnology / BT 507 :]	Enviro	onme	ntal B	iotechi	nology)		
	SEMESTER VI								
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks		
BT 601	Virology	3	1	0	4	4	100		
D1 001	Principles of Managements &		-				100		
HU 601	Entrepreneurial Development	3	0	0	3	3	100		
BI 605	Introduction to Molecular Modeling and	3	0	Δ	7	5	200		
DI 005	Chemo informatics	5	U	т	,	5	200		
HU 602	Bio safety and Bioethics & IPR	3	1	0	4	4	100		
BT 602	Genomics	3	0	2	5	4	150		
BI 504 / BI 606 / BI 603	Elective-II	3	1	2	6	5	150		
Total				8	29	25	800		
Elective II (BI 504: Operating System / BI 603:Perl & Bioperl / BI 606:Computer Networking)									
	SEMESTER VII	•			•		Ċ,		
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks		
BT 701	Biomembrane and Molecular Cell Signaling	3	1	0	4	4	100		
BT 705	Developmental Biology and Stem cells		1	0	4	4	100		
HU 701	Quality Control Management in Biotechnology		1	0	4	4	100		
BT 706	Transcriptomics		0	4	7	5	200		
BT 603	Biochemical Engineering	3	1	4	8	3	200		
BT 707 / BT									
708 / BT 709 /	Elective-III	3	0	4	7	5	200		
BT 710									
	Total	18	3	8	27	25	900		
Elective II	I (BT 707: Metabolic Engineering / BT 708 :	Mari	ne Bi	otechi	nology	/ BT 7	09 :		
	Agricultural Biotechnolo	gy)							
	SEMESTER VIII								
Course Code	Course Name	L	Т	P	Hr	Cr	Marks		
BT 801	Protein Modeling and Drug Designing	3	0	4	7	5	200		
BT 802	Proteomics	3	0	2	5	4	150		
BT 505	Biomedical Engineering	3	1	0	4	4	100		
BT 803	Nanobiotechnology	3	0	2	5	4	150		
BT 804	Seminars in Biotechnology & Advances in Biotechnology	3	1	0	4	4	100		
BT 805 / BT 710	Elective – IV	3	0	4	7	5	200		
	Total	18	2	12	32	26	900		
El	ective III (BT 805: Clinical Research / BT 71	0 : Bi	ophar	mace	uticals)			
	Semester IX & X		•						
	Research Project (10 months)		50 C	redits			800		

COURSE STRUCTURE FOR M. TECH (INTEGRATED) BIOTECHNOLOGY

SEMESTER I							
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BS 101	Physics	3	0	2	5	4	150
BS 102	Organic chemistry	3	0	4	7	5	200
BS 103	Mathematics	3	1	0	4	4	100
BT 101	Introduction to Electronics &	3	0	2	5	4	150
BI 101 Introduction to Computers & Computer Organization		3	0	4	7	5	200
HU 101	Communication Skills	1	2	0	3	3	100
HU 102	Disaster Management	2	0	0	2	2	100
	Total 18 3 12 33 27 1000						
BS - Basic Sciences, HU - Humanity, BT - Biotechnology, BI - Bioinformatics							

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) TITLE OF THE COURSE: PHYSICS COURSE CODE: BS-101 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE

The objective of this course is:

To create general understanding regarding basic physical principles involved in living systems.

To familiarize the student with basic concepts in physics as: classical optics used in microscopes and telescopes, thermometry and heat, mechanical, fluid and solid state properties.

To familiarize students with concepts in digital electronics, lasers, sound waves, electricity.

To introduce them to concepts in modern physics such as: production of X-ray, X-ray crystallography, quantum mechanics etc.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in classical and modern physics, laser sources, concepts and laws applicable to quantum-mechanical particles. This would enable him to understand use of physical methods in understanding Biomolecular structure and interactions

PREREQUISITES

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Optics: Interference	Introduction to optics, Principles of superposition,	08
	Diffraction &	Constructuve & destructive Interference, Types of	
	Polarization	Interference, Newton"s rings.	
		Diffraction- Types of diffraction, Diffraction grating,	
		Rayleigh"s criterion, Resolving power of Microscope and	
		Telescope.	
		Polarization of light waves, Polaroid, Optical activity.	
2	Thermometry and	Principles of Thermometry, Temperature and it's	05
	Heat	measurements, Platinum resistance Thermometer,	
		Thermocouple and Thermistors, Modes of Heat Transfer.	
3	Properties of Fluid:	Surface Tension, Surface Energy, Angle of Contact,	07
	Surface Tension &	Capillarity action, Determination of Surface tension by	
	Viscosity	capillary rise method, Jaeger"s method, Temperature	
		dependence of surface tension and its applications.	
		Viscosity, Coefficient of viscosity, streamline and turbulent	
		flow, Reynold"s number, Stoke"s law, Terminal velocity,	

COURSE DESCRIPTION

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

		Determination of ", η " by falling sphere method.	
4	Elasticity	Stress and Strain, Hook"s law, Stress-strain curve, Young"s	03
		modulus, Determination of Young"s modulus.	
5	Solids and	Classification of Solids (Conductor, Semiconductor and	05
	Semiconductor	Insulators), intrinsic and extrinsic semiconductors, PN	
	Devices	Junction Diode, Zener Diode, Junction Transistors (CE,CB	
		mode)	
6	Introduction to Digital	Introduction to Binary mathematics, BCD numbers, Basic	02
	Electronics	logic gates, De-Morgan"s Theorem	
7	Lasers	Properties of Lasers, Production mechanism, Ruby Laser,	03
		Helium Neon Laser, applications of Lasers.	
8	Sound waves	Types of sound waves (Longitudinal and Transverse),	03
		Audible, Ultrasonic and Infrasonic waves, Beats, Doppler	
		effect, Applications of Ultrasonic waves.	
9	Electricity	Heating effect of electric current, Joule"s law, Transformers,	02
		Types of Transformers.	
10	Modern Physics: X-	Introduction to X-Rays : Introduction, Production of X-rays,	07
	rays, Crystallography,	X-Ray diffraction and its Applications.	
	Introduction to	Introduction to crystal structure, Unit cell, seven crystal	
	Quantum Mechanics	systems.	
		Plank"s Quantum Theory, Properties of Photon, Photoelectric	
		effect, wave particle duality of radiation, de Broglie"s	
		hypothesis, Heisenberg"s Uncertainty principle.	
	•	Total Lectures	45

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Physics-David Haliday and Robert Resnik (Vol I and Vol II) [Wiley Eastern Pub] Perspectives of Modern Physics-Arthur Beiser [Mc Graw Hill]
- 2) Fundamensls of optics-Jenkins [Mc Graw Hill] Optics –Ajoy Ghatak [Tata Mc Graw Hill]
- 3) Digital Principles and Applications-Malvina and Leach [Mc Graw Hill]

PRACTICAL IN PHYSICS (TWO HOURS PER WEEK)

Marks 50

The course will also have a practical component. The practical training would be in the area of optics, electronics, thermometry, calorimetry, conductivity, measurement of physical properties as: viscosity and surface tension.

LIST OF EXPERIMENTS

- 1. Diffraction Grating: Use of diffraction grafting for determination of wavelength of spectral lining.
- 2. Resolving Power: To determine the resolving power of Microscope or telescope.
- 3. Diode Characteristics: Study of forward and reverse characteristics of Diode. Transistor Characteristics: Study of characteristics of Photocell.
- 4. Band gap of semiconductor: Study of input and output characteristics of a transistor and determination of band gap of a semiconductor.
- 5. Ultrasonic Interferometer: Determination of velocity of ultrasonic waves by ultrasonic
- 6. Study of logic gates (OR, AND, NOT).
- 7. Thermocouple: Study of variation of thermo emf (electromotive force) with temperature.
- 8. Surface Tension: Determination of the surface tension of a given solution.
- 11. Viscosity: Determination the coefficient of viscosity by Stoke's method and its practical application.
- 12. Joule"s Law: Determine of Joule"s constant.
- 13. Determination of wavelength of monochromatic light by Newton's rings experiments.
- 14. Thermal Conductivity: Determination of coefficient of thermal conductivity of given specimen.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		10
Major test at the end of semester	3 hours	25
Total		50

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) TITLE OF THE COURSE: ORGANIC CHEMISTRY COURSE CODE: BS 102 MARKS: 200

L T P Hr C 3 04 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is:

To familiarize the students with basic concepts of organic chemistry.

To familiarize the students with structures of organic molecules as: alkanes, alkenes, alkynes, aliphatic and aromatic molecules

To introduce them to interactions amongst organic compounds

LEARNING OUTCOME:

At the end of this course student should be able to understand basic principles of organic chemistry and develop skills in handling organic molecules. This is essential for undertaking practical training in Biochemistry and genetic engineering at the later stage.

PREREQUISITES:

This is an introductory course. There are no prerequisites for the course.

Sr.	Торіс	Description	Hrs
No			
1	Introduction to organic	Functional groups	2
	chemistry		
2	Organic compounds	Chemistry of alkanes, alkenes, alkynes (Comparative	5
		study)	
3	Stereochemistry	Stereo isomers, Enantiomers, Chiral centers/ Optical	8
		activity, Geometric isomers	
		Meso- isomers, Conformational isomers	
4	Chemistry of cyclic aliphatic	Nomenclature and preparation,	8
	carbons	Reactions of small ring compounds, (cyclopropane	
		and cyclobutane), Baeyers Strength Theory,	
		Stereochemistry of Cyclic Aliphatic compounds	
5	Chemistry of heterocyclic	Furan, Pyrrole, Thiophene, Purines, Pyrmidines	8
	compounds	(Nucleic acids), Quinoline, Isoquinoline	
6	Chemistry of aromatic	Structure of Aromatic compounds (Benzene and its	8
	compounds	derivatives), Aromatic Characters: The Huckel rule (
		4N+2)	
7	Reaction mechanisms	Nucleophilic SN_1 , SN_2 , Electrophilic E_1 and E_2)	5
Total N	lumber of lectures		44

COURSE DESCRIPTION

METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

Organic Chemistry (6th Edition, 1992)- Robert Thornton Morrison and Robert Neilson Boyd (Prentice Hall)

Organic Chemistry Vol. I and II and III by I. L Finnar. 5th Edition Pearson Publications

PRACTICAL IN ORGANIC CHEMISTRY(4 Hrs. PER WEEK)MARKS 100LIST OF EXPERIMENTS:

- 1. 10 Quantitative analysis, 5 organic and inorganic mixtures
- 2. Quantitative analysis:

Estimation of aniline, acetone, and aspirin

Molecular weight of monobasic/dibasic acids.

- 3. Preparation of orange dyestuff (Sagand III)
- 4. Preparation of p-nitroacetanilide from actanilide
- 5. Preparation of acetnilide from aniline
- 6. Preparation 2,4 DNP derivatives
- 7. Estimation of Cu^{2+} from brass
- 8. Estimation of %q of NH₄Cl+BaSO₄ grarimetric analysis
- Preparation of Std. K₂Cr₂O₇ solution and estimation of Fe (II) and Fe(III) from a given mixture of Fe(II) and Fe(III) using external indicators.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		20
Major test at the end of semester	3 hours	50
Total		100

TITLE OF THE COURSE: MATHEMATICS COURSE CODE: BS-103 MARKS: 100

L	Т	Р	Hr	• C
3	1	0	4	4

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics.

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of different mathematics and statistical tools used in Biotechnology. This knowledge would be applicable in different industries

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the 10+2 level they should have cleared the core mathematics in the first semester.

COURSE DESCRIPTION

Sr.	Topics	Lectures
No.		Required
1	Algebra :	02
	1.1 Logarithms	
	1.1.1 Definition of Logarithm (Natural and common logarithm	
	1.1.2 Laws of Logarithm.	
	1.2 Binomial Theorem:	04
	1.2.1 Definition of factorial notation, peronntation & combinations.	
	1.2.2 Binomial Theorem for positive index.	
	1.2.3 General term, middle term	
	1.2.4 Binomial theorem for any index	
	1.2.5 Binomial Theorem for Approximation.	
2	Trigonometry :	03
	2.1 Trigonometric Rations (t-ratios)	
	2.1.1 t-ratios of any angle, Relation between t-ratios, Fundamental identities.	
	2.1.2 Relation between degree & radian, T-ratios of std. angles.	
	2.1.3 Quadrants sign of T-ratios in various quadrants, T-ratios of negative angles.	
	2.2 T-ratios of Allied, Compound, Multiple and Submultiples angles.	08
	2.2.1 T-ratios of Allied angles.	
	2.2.2 T-ratios compound angles.	
	2.2.3 T-ratios of multiple & sub-multiple angles.	
	2.2.4 Factorization formulae	
	2.2.5 Defactorization formulae.	
	2.3 Inverse Trigonometric Functions.	02
	2.3.1 Definition of Inverse t-functions.	
	2.3.2 Principle value of inverse t-functions.	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY

BATCH ((2017-18)
-	

BAICH	(2017-18)	
3	Function and Limit	02
	3.1 Function :	
	3.1.1 Definitions of variable, constant, intervals such as open, closed, semi-open etc.	
	3.1.2 Definitions of function, value of function, domain & range of a function.	
	3.2 Limits :	06
	3.2.1 Concepts and definition of Limit.	
	3.2.2 Limits of algebraic functions.	
	3.2.3 Limits of trigonometric functions.	
	3.2.4 Limits of exponential functions.	
	3.2.5 Limits of logarithmic function.	
4	Derivatives	06
	4.1 Derivatives :	
	4.1.1 Definition of Derivatives, notations.	
	4.1.2 Rules of Derivatives (without proof)	
	4.1.3 Derivatives of composite functions.	
	4.1.4 Derivatives of Inverse trigonometric function by substitution method.	
	4.1.5 Derivatives of Implicit functions.	
	4.1.6 Logarithmic differentiation.	
	4.1.7 Second order differentiation.	
	4.2 Application of Derivatives	04
	4.2.1 Geometrical meaning of the derivatives.	
	4.2.2 Equations of Tangent & normal to the given curve.	
	4.2.3 Maxima & Minima.	
5	5.1. Integration :	03
	5.1.1 Definition of integration, Integration of Standard function; Rules of Integration.	
	5.1.2 Integration of rationale functions; Trigonometric functions to determine	
	constant of Integration,	
	5.2. Definite Integration:	02
	5.2.1 Definition of Definite integral, definite.	
	5.2.2 Definite integral with simple problems.	
	5.3. Application of Definite Integrals	02
	5.3.1 Area under the curves.	
	5.3.2 Area between two curves.	
6	Differential Equation (D.E.)	04
	6.1. Definition of D.E., order & degree of D.E., formation of D.E for function	
	containing single constant.	
	6.2 Solution of D.E. of first order & first degree such as:	
	i) Variable separable type.	
	ii) reducible to variable separable form	
	iii) Exact D.E.	
	iv) Linear D.E	
	v) Bernoulli"s D.E.	
	Total Lectures	48

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) **METHODOLOGY**

5 4

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Mathematics for Biological Science by Jagdish Arya & Ladner. 1979. Prentice Hall
- 2) Numerical methods by E. Balguruswamy. 1999. Tata Mc Graw Hill Publications Pvt Ltd.
- 3) Higher Engineering Mathematics B. S. Grewal, Khana Publication, New Delhi. 2003
- 4) Applied Mathematics P. N. Wartikar, Pune Vidaypeeth, Griha Prakashan, Pune
- 5) Introductory Methods of Numerical analysis, S. S. Sastry, Prentice Hall of India, New Delhi.2005.

TITLE OF THE COURSE: INTRODUCTION TO ELECTRONICS AND **INSTRUMENTATION ENGINEERING COURSE CODE: BT 101** P Hr C LT **MARKS: 100** 3 0 2

OBJECTIVE OF THE COURSE:

Objective of the course is to familiarize students with the basic concepts of electronic engineering and electronics engineering.

This knowledge would help them in applying them in various biological techniques. Also the Knowledge of this subject will form a profound base for the instrumentation used in various advanced courses of Biotechnology and Bioinformatics.

LEARNING OUTCOME

At the end of this course student should be able to understand the engineering electronics and instruments.

PREREOUISITES

Since the course is very basic in nature, knowledge of physics and mathematics is required

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) COURSE DESCRIPTION

Sr.	Торіс	Description	Hrs
No.			
	Electronics		•
1	Introduction to	History and Scope of	1
	Electronics	Electronics	
2	Electronic Signals	Characteristics of electrical Signals	2
3	Electronic devices	Input & output relations, Simple electronics devices: Resistors,	6
		Capacitors, Inductors, Bias voltage.	
4	Electronic circuits	Simple circuits for amplification, power supplies and for wave	8
		shaping .Amplification: Concept of amplification, type of	
		amplifiers, OP-Amp and its characteristics, simple applications	
		(Adder, substracter, integrator, differentiator), and filters.	
5	Digital electronics	Number systems, binary codes, Boolean algebra, arithmetic	8
		operations, logic functions, combinational and sequential logic,	
		different OR, AND, NOR, NAND, EXOR gates, flip flops,	
		registers and counters.	
6	Microprocessor	Introduction to Microcomputer and Microprocessor and block	4
		diagram, CPU and ALU, Timing and control unit and Block	
		diagrams instruction and data formats.	
7	Interfacing peripherals	A to D converters, DAC, Resolution, speed, types	4
	and applications		
	Instrumentation		
1	Introduction	Introduction to instrumentation and definitions	1
2	Sensing elements	Types of sensors, electrodes and transducers	1
3	Electrodes:	Electrolyte interface, Sensing elements, Detectors, Signal	4
		conducting circuits, circuit models, suitability of electrode	

		potentials, circuit models, external and internal electrodes, pH, pO2 and pcO2 electrodes, connectivity.	
4	Transducers	Definitions, types, displacement pressure, temperature, vibration, ultrasound etc, calibration, sensitivity and resolution, Flow transducers & Rota meter, venturi, orifice Plate	6
	Total Number of Lect	ures	45

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

100

BOOKS RECOMMENDED:

- 1. Digital Electronics by R. K. Jain Jain, Tata Mc Graw Hill, 3rd Edition, 2003.
- 2. Grob"s Basic Electronics Mitchel E. Schultz.., Tata McGraw Hill, 10th Edition 2006.
- 3. Principals of electronics By V. K. Mehta , S. Chand Publisher , 1st Edition , 2010.
- 4. Op Amps and linear integrated circuits By Ramakant Gaikwad, McGraw –Hill publishing company limited, 4th Edition, 2002.
- 5. Integrated Electronics By Millman and Halkias. Mcgraw-Hill, 3rd Edition 1972.
- 6. The Z 80 Microprocessor By Ramesh Gaonkar, Penram Publisher, 3rd Edition, 1988.
- 7. A course in electrical and electronic measurements and instrumentation by A. K. Sawhney, Puneet Sawhney, Rai publisher, 1996.

PRACTICALS IN BASIC CONCEPTS IN ELECTRONICS AND INSTRUMENTATION
ENGINEERING(2 Hrs. PER WEEK)MARKS 50

COURSE DESCRIPTION

Sr.	Name of the Practical	Time (Hrs.)
No.		
1.	Study of diode characteristics	4
2.	Study of operational Amplification 741 i) Inverting Amplifier ii) Non inverting amplifier	4
3.	Study of operational Amplification 741 i) Inverting Amplifier ii) Non inverting amplifier	4
4.	Study of Ph meter circuits & working	4
5.	Study of Ph electrodes & role of electrolytes	4
6.	Study of Conductivity meter, circuits & working	4
7.	Study of Conductivity meter electrodes & functions	4
8.	Pressure development & vibration DVPT	4

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
Major test at the end of semester	2.5 hours	30
Total		50

TITLE OF THE COURSE: INTRODUCTION TO COMPUTERS AND COMPUTER ORGANIZATION COURSE CODE: BI 101 MARKS: 150

LT P Hr C 3 1 2 6 5

OBJECTIVE OF THE COURSE:

The objective of the course is

To familiarize the students with computers and programming concepts.

To introduce basic concepts in: hardware, software and its implementation.

To introduce concepts of Networking, World Wide Web (Internet), Telnet, FTP, Etc.

Programming module is intended to familiarize them with computer logic and solution of real world problems using computers.

LEARNING OUTCOME

At the end of this course student would be able to understand basic principles of Computing, Networking and Programming.

PREREQUISITES

The course is of introductory nature and there are no prerequisites for the course.

COURSE DESCRIPTION

Sr. No.	Торіс	Description	Hrs
1	Basic Organization of	Introduction to Computer, historical background, Block	3
	Computers	diagram of a Computer, parts of Computer, their	
		integration and function.	
2	Hardware	Computer hardware, different types of I/O devices,	5
		motherboard, BIOS, Primary and Secondary Memory,	
		different types of Printers, Storage Media, their sizes	
		and use. Computer booting, loading operating system	
		(OS) and execution. execution cycle (fetch and execute)	
3	Software	Introduction to software, Application software	4
		(Packaged & Customized) and System Software (OS &	
		Utilities). Complier & Interpreter, software loading and	
		execution, Task management by OS for Application	
		Software.	
4	Types of Computer	Difference between Super Computer, Mini Computer	2
		and a Micro Computer and their applications.	
5	Data representation in	Introduction to Binary, Octal and Hexadecimal Number	2
	Computers	System	
6	Binary Arithmetic	Basic Binary Arithmetic i.e. Addition, Subtraction,	4

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

		Multiplication, Division, Compliments, Subtraction by means of 2"s Compliment, Logical operations on Binary	
		(AND, OR, NOT)	
7	Transforming Data into	Distinction between data and information their	1
	Information	represented in computers.	
8	Operating System &	OS, tasks performed by OS, Introduction to DOS,	2
	Interface	Windows and Linux/UNIX	
9	Networking Fundamentals	Computer networks (n/w), various terms associated with	5
		networks, topologies for n/w, different mediums,	
		hardware and technologies associated with n/w, n/w	
		protocols, introduction OSI layers, TCP/IP stack,	
		services provided by TCP, IP Addressing	
10	Client Server Architecture	Introduction to client, server, client-server architecture	1
11	LAN/WAN/MAN/CAN	Introduction to LAN/WAN/MAN and CAN, and their	2
		use. Different technologies used to implement them.	
12	Telnet, FTP	History and use of Telnet based on UNIX terminals.	3
		FTP and its use. TFTP. Case study how to setup Telnet	
		and FTP servers on LINUX	
13	Internet, WWW, HTML	Internet, DNS and name resolution. History of Internet.	4
		IP Addressing scheme and its relation to the Internet.	
		Basic HTML tags	
14	Introduction to C and	Data types, Decision control, Loop control, Case	8
	Programming in high	control, Functions, Arrays and Strings	
	level language		
Total Number of Lectures46			

METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- Introduction to Computers by Norton
- Fundamentals of Computers by Raja Raman
- Computers Fundamentals by Sinha
- Introduction to Computers by Subramanian.

PRACTICAL IN INTRODUCTION TO COMPUTERS AND COMPUTER ORGANIZATION (2 Hrs. PER WEEK) MARKS: 100

- 1. Introduction to various components of a computer.
- 2. Assignments on Microsoft Word
- 3. Assignments on Microsoft Power Point
- 4. Assignments on Microsoft Excel
- 5. Assignments on Microsoft Access
- 6. Learning the MS-DOS commands
- 7. Creating web pages in HTML (Basic formatting tags, style attribute, adding image, Lists)
- 8. Creating web pages in HTML (Table, Hyperlink to text and image, frames)
- 9. Basic C programs (5 programs)
- 10. C programs on Decision control (5 programs), Loop control (5 programs), Function (3 programs),
- Arrays (2 programs) and String (2 programs).

TITLE OF THE COURSE: COMMUNICATION SKILLS COURSE CODE: HU-101 MARKS: 100

L T P Hr C 1 2 0 0 0

OBJECTIVE:

The objective of this course is:

To develop communication skills amongst students,

To familiarize students with communication elements,

To acquaint them with the Scientific reading, Writing & Presentation skills.

To familiarize students with concepts in plagiarism.

LEARNING OUTCOME:

At the end of the course, the students will be able to use different forms of communication, produce good document in science and avoid plagiarism of any form.

PREREQUISITES:

This is an introductory course and there are no prerequisites.

Sr.			No. of
No.	Topics	Detail syllabus	Lectures
1	Introduction to	Elements, definitions, scope of communication and	02
	communication	communication as part of science	
2	Communication	Verbal and nonverbal communications.	02
	elements	Principles of effective communication, Oral presentations,	
		Barriers to communications, Use of good English:	
		Introduction to English Grammar: parts of speech, use of	
		articles & prepositions, use of correct tense, spellings etc.	
3	Scientific reading,	Introduction to scientific reports and writings?	08
	writing & presentation	Compilation of experimental data, Communication methods	
		in science, Use of good English in science, Examples of	
		Scientific and Unscientific writing.	
		Process of Scientific writing: thinking, planning, rough drafts	
		and revising context.	
		Different styles of scientific writing APA, MLA or Chicago.	
		Writing papers, reviews and Bibliography	
4	Plagiarism	Introduction to Plagiarism	04
		Examples of Plagiarism	
Total Lectures			

COURSE DESCRIPTION :

METHODOLOGY

The course will be covered through lectures supported by tutorials. During tutorials, students would

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

be made to present scientific and nonscientific data/information using different communication skills. They would be corrected as and when needed and taught how to improve their skills in reading, writing and data presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

Technical Writing and Professional Communication- Thomas Huckin and Lesle Oleson London William Collins and Sons.

Business English and Communication- By Lyn Clark and Zimmer. New York Mcgraw Hill.

Developing Communications-Mohan K

TITLE OF THE COURSE: DISASTER MANAGEMENT COURSE CODE: HU-101 MARKS: 100

L T P Hr C 2 0 0 2 2

LEARNING OBJECTIVE:

To provide student an exposure to disasters, their significance and types.

To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction

To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)

To enhance awareness of institutional process in the country and

To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

Sr.			No. of	
No.	Topics	Detail syllabus	Lectures	
1	Introduction to Disasters	Concepts and definitions (Disaster, Hazard, Vulnerability,	04	
		Resilience, Risks)		
2	Disasters: Clarification,	Differential impacts – in terms of caste, class, gender, age,	08	
	Causes, Impacts	location, disability,		
	(Including social,	Global trends in disasters urban disasters, pandemics,		
	economic, political,	complex emergencies, Climate Change		
	environmental, health,			
	psychosocial, etc.)			
3	Approaches to Disasters	Phases, Culture of safety, prevention, mitigation and	08	
	Risk reduction	preparedness, community based DRR, Structural –		
		nonstructural measures, roles and responsibilities of		
		community, Panchayati Raj Institution / Urban Local		
		Bodies (PRIs/ULBs), states, centre and other Satke-holders		
4	Inter-relationship	Factor affecting Vulnerabilities, differential impacts,	04	
	between Disasters and	impact of Development project such as dams,		
	Development	embankments, changes in Land-ude etc. Climate Change		
		Adaptation. Relevance of indigenous knowledge,		
		appropriate technology and local resources		
5	Disaster Risk in India	Hazard and Vulnerability profile of India	06	
		Components of Disaster Relief : Water, Food, Sanitation,		
		Shelter, Health, Waste Management,		
		Institutional Arrangements (Mitigation, Response and		
		Preparedness, DM Act and Policy, Other related policies,		
		Plans, programmes and legislation)		
6	Project Work	Field Work, Case Studies	06	
Total Lectures				

COURSE DESCRIPTION :

The course will be covered through lectures& classroom discussion.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Alexander David, Introduction in "Confronting Catastrophe", Oxford University Press, 2000.
- 2. Andharia J. Vulnerability in Disaster Discourse, JTCDM, Tata Institute of Social Science working Paper no. 8, 2008
- 3. Blaikie, P, Cannon T, Davis I, Wisner B 1997, At Risk Natural Hazards, Peoples, Vulnerability and Disasters, Rutledge.
- 4. Coppola P Damon, 2007, Introduction to International Disaster Management,
- 5. Carter, Nick 1991, Disaster Management : A Disaster Manager"s Handbook, Asian Development Bank, Manila Philippines.
- 6. Cuny, F.1983, Development and Disasters, Oxford University Press
- 7. Document on World Summit on Sustainable Development 2012
- 8. Govt. of India : Disasters Management Act 2005. Government of India, New Delhi
- 9. Government of India, 2009, National Disasters Management Policy.
- 10. Gupta Anil K, Sreeja S. Nair, 2011, Environmental Knowledge for Disasters Risk Management, NIDM, New Delhi
- 11. Indian Journal of Social Work 2002, Special Issue on Psychosocial Aspects of Disasters, Vol. 63, Issue 2, April
- 12. Kapur, Any & Other 2005 : Disasters in India Studies of Grim reality, Rawat Publishers, Jaipur

SEMESTER II

SEWIES LEK II							
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BS 201	Physical Chemistry	3	1	0	4	4	100
BS 202	Introduction to Bio-molecules	3	0	4	7	5	200
BS 203	Biostatistics	3	1	0	4	4	100
BT 201	Engineering Mechanics	3	0	2	5	4	150
BI 201	C Programming	3	0	4	7	5	200
BS 204	Environmental Sciences	3	0	2	5	4	150
Total 18 2 12 32 26 900							

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) TITLE OF THE COURSE: PHYSICAL CHEMISTRY COURSE CODE: BS-201 MARKS: 100

LTP HrC 3 1 0 4 4

OBJECTIVE

The objective of this course is to familiarize the student with the concepts and physical principles involved in Biotechnology.

They would learn topics such as: Basic concepts and principles of Osmosis, Dialysis, Viscosity, Colloids, Phase rule, Acid-bases, Photochemistry etc.

They would be made to understand the nature of Chemical Bonding, Atomic orbitals and Bioenergetics its relevance in stabilization of the molecules. They would also learn Basic principles of radioactive isotopes.

LEARNING OUTCOME

At the end of the course, the students will be able to use different Biophysical techniques and principles used in Biotechnology.

PREREQUISITES

This is the first introductory course and there are no prerequisites.

COURSE DESCRIPTION

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Basic	1. Osmosis- Diffusion, Osmotic Pressure, Theories of Osmosis.	2
	concepts	2. Dialysis-Introduction, Technique, reverse dialysis, Glass fiber dialysis.	
	and	3. Viscosity –Introduction & Types of viscometer.	2
	principles	4. Colloids-Lyophilic & Lyophobic sols, Optical properties, Electrical	2
		properties of sols, Gold number. Donnan Equilibrium.	3
		5. Phase rule-Phase, Components & Degree of freedom .Derivation of	3
		Phase rule. Phase diagram. Water system.	5
		6. Acid-bases- Three concepts of acids & bases, P ^H meter & types of electrodes ,Buffer solution, Acid base indicator , Law of mass action, Numerical.	3
		7. Photochemistry – Photochemical reactions, Light absorption, Laws of	
		photochemistry, Photo physical processes, Einstein equation.	
2	Chemical	1. Chemical Bonding- Different types of bonds & bond characteristics	3
	bonds and	Ionic Bond, Covalent bond, coordinate covalent bond, Metallic bond.	
	their roles in	2. Atomic orbital"s-Atomic orbital theory, Hybrid orbital"s (sp, sp2, sp3),	
	stabilizing	molecular orbital theory.	3
	the bio-	3. Bioenergetics- First & Second laws of Thermodynamics, Internal	
	molecules	energy, Enthalpy, Entropy, concept of free energy, Standard free energy	
		change of a chemical reaction, ATP & high energy phosphates	7
		compounds.	
		Chemical equilibrium constant, Nernst equation.	
3	Basic	1. Isotopes in Biology- Properties, Half-life, Radioactive decay,	4

radioactive	radioactivity with matter.	
isotopes	2. Measurement of radioactivity-Methods based on Gas ionization	
	(Ionization chamber, Proportional counter, Geiger counter), Photographic	6
	methods, Methods based on Excitation (Liquid & solid Scintillation	3
	counting), Quenching.	
	3. Tracer technique-Advantages & limitations, Labeling procedures.	2
	4. Use of Isotopes-Tritium, Carbon-13, Nitrogen-15, Oxygen -18, Carbon-	
	14,	
	Sodium-24, Phosphorus-32, Sulphur-35.	
	Total lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials, students would be made to analyze data related to different Biophysical techniques. They would be also made to compute molecular properties based on bonds.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Physical Chemistry by Atkins Peter and Paula Julio De 7th ed.2010 Oxford University Press New Delhi.
- Principles of Physical Chemistry by David Frifelder. Jones & Bartlett Publishers; 2nd Sub edition (1984).
- Essentials of Physical Chemistry B.S. Bahl & Arun Tuli. S Chand & Co. 2000. Biophysical Chemistry by Avinash Upadhyay, Kakoli Upadhyay & Niamalendu Nath. Himalayan Publishing House. 2005.

OURSE NAME: INTRODUCTION TO BIO MOLECULES COURSE CODE: BS 202 MARKS: 200

L T P Hr Cr 304 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the basic concepts regarding chemical structure (2D-structure), three dimensional (3-D) structures and functions of Biomolecules: carbohydrates, lipids, proteins and nucleic acids.

This knowledge would enable them to understand structure function relationship.

Knowledge of this subject will form a profound base of forthcoming subjects like metabolism, Enzymology, molecular biology etc.

LEARNING OUTCOME

At the end of this course student should be able to understand structural features of Biomolecules and their relationship to their interactions.

PREREQUISITES

Since the course is very basic in nature there are no prerequisites.

Sr.	Торіс	Description	Hrs
No.			
1	Introduction to bio-	Functional groups, 3D (three dimensional) structure, geometric	4
	molecules	and stereo-specificity.	
2	Carbohydrates	Classification and stereochemistry,	6
		Structural properties, functional importance of storage and	
		transport of	
		structural polysaccharides: sucrose, starch, glycogen, cellulose,	
		pectin, hemicelluloses, chitin, muco-polysaccharides etc.,	
		Biosynthesis and role of N-linked and O-linked glycoproteins	
		and proteoglycans.	
3	Lipids	Structure, classification and properties of lipids,	5
		Lipid assembly, model membranes, formation of liposomes and	
		drug targeting	
4	Vitamins and	Classification, role, estimation deficiency and diseases	4
	Growth factors		
5	Proteins	Amino acids: classification, structure and properties, Structural	15
		features of Proteins: Primary, secondary, tertiary and quaternary	
		structure, Motives and domains.	
		Structural stabilization of proteins	
		Protein function.	
6	Nucleic Acids	Nitrogen bases: nucleosides and nucleotides.	10
		Historical basis of DNA structure	
		Fibre X-ray diffraction and single crystal X-ray diffraction study	

COURSE DESCRIPTION

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

	on DNA	
	A,B & Z form of DNA	
	Local distortion in DNA structure	
	Structure of Nucleozome	
	Structure of RNA	
	Properties of nucleic acids	
Total number of	of lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Text Book of Biochemistry by Nelson and Cox
- 2) Biochemistry By Lubert Stryer Edn 3rd, 4th, and 5th.
- 3) Biochemistry by Mathews.
- 4) Nucleic acid structure W. Sanger
- 5) Protein structure Schulz
- 6) Protein Structure, Function & Architecture, Brandon & Tooze

PRACTICAL IN INTRODUCTION TO BIO-MOLECULES (4 Hrs. per week) Marks 100

LIST OF PRACTICALS

- 1) Preparation of buffer solution.& demonstration of buffering action.
- 2) Determination of λ max & verification of Beer-Lambert's law; Determination of molar extinction co-efficient.
- 3) Preparation & standardization of laboratory reagents.
- 4) Qualitative detection of carbohydrates (Molish test, Benedicts test, Fehling"s test, lead acetate test, inversion test, Seliwanoff"s test, Osazone test).
- 5) Titration curve of Glycine.
- 6) Qualitative detection of Lipids (solubility test, Acroline test (for glycerol), and test for cholesterol
- 7) Quantitative detection of Proteins
- 8) Introduction to molecular Graphics software RasMol
- 9) Understanding Protein Structure using RasMol
- 10) Understanding DNA structure using RasMol

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		20
Major test at the end of semester	3 hours	50
Total		100

TITLE OF THE COURSE: BIOSTATISTICS COURSE CODE: BS-203 MARKS: 100

 L
 T
 P Hr C

 3
 1
 0
 4
 4

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics & statistics.

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of different mathematics and statistical tools used in Biotechnology. This knowledge would be applicable in different industries

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the twelth level they should have cleared the core mathematics in the first semester.

COURSE DESCRIPTION

Sr.	Topics	Lectures Required
1	Determinant & Matrices :	<u>Nequireu</u> 04
1	1 2 Determinant	04
	1.2.1 Definition & expansion of determinant of order 2 and 3	
	1.2.2 Cramer's rule to solve simultaneous equations in 2 and 3 unknowns	
	1.2 Matrices:	10
	1.2.1 Definition of Matrix of order mxn and types of Matrices.	10
	1.2.2 Algebra of Matrices.	
	1.2.3 Transpose of a Matrix	
	1.2.4 Minor & cofactor of an element of a matrix	
	1.2.5 Adjoin of a Matrix.	
	1.2.6 Inverse of a Matrix by adjoin method	
	1.2.7Solution of simultaneous equations containing 2 and 2 unknowns by Matrix	
	inversion method.	
2	Complex Number :	04
	2.1 Definition of Complex number, Cartesian, polar, exponential forms of	
	complex number.	
	2.2 Algebra of Complex Number	
	2.3 De - Moiyre"s theorem (without proof) and simple problems.	
	2.4 Euler"s form of circular functions, Hyperbolic functions and relations	
	between circular hyperbolic functions.	
3	3.1 Numerical Solution of Algebraic Equations :	06
	3.1.1 Bisection Method	
	3.1.2 Regula – Falsi Method	
	3.1.3 Newton-Rophson Method	
	3.2 Numerical Solution of Simultaneous Equations :	04
	3.2.1 Gauss elimination method.	
	3.2.2 Iterative Methods Gauss Seidal and Jacobi"s Method.	
	3.3 Numerical Methods :	02
	3.3.1 Solution of Linear & Non-Linear equation by	
	i) Trapezoidal Rule ii) Simpson"s Rule	

4.1 Set Theory

	4.2 Probability :	
	4.2.1 Definition of random experiments, sample space, events, occurrence of	
	event and types of events.	
	4.2.2 Definition of probability, addition and multiplication theorem of	
	probability.	
	4.3 Probability Distribution	04
	4.3.1 Binominal Distribution.	
	4.3.2 Poisson"s Distribution.	
	4.3.3 Normal Distribution.	
5	Statistics	
	5.1 Frequency Distribution :	01
	5.2 Measures of Control tendency (For Raw, Ungroup & group Data)	04
	5.2.1 Mean	
	5.2.2 Median	
	5.2.3 Mode	
	5.3 Measures of Dispersion	01
	5.3.1 Rauge, Variance, Coefficient of Cariance.	
	5.3.2 Standard Derivation.	
6	Correlation & Regression	
	6.1 Correlation	01
	6.2 Regression	01
7	Chi square Test for independent attribute in RXC Table (Special case of 2x2	01
	Table	
8	F-Test	01
	Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

BOOKS RECOMMENDED:

Fundamentals of Statistic by S. G. Gupta. 17th Ed. Himalaya Publications 2000 Statistical Method in Biology by Bailey IIIrd Ed. University of Cambridge Press 1995. Statistics from biologist by Campbell R.C. Ed. 3. Cambridge University Press1989

Fundamentals of Mathematical Statistics S. C. Gupta and Kapoor, S. C. Hand publication, New Delhi .1987.

NAME OF THE COURSE: ENGINEERINGMECHANICSCOURSE CODE: BT 201L T P Hr CMARKS: 1503 0 2 5 4

OBJECTIVES:

The objective of the course is to familiarize the students with the basic concepts of engineering mechanics.

LEARNING OUTCOME:

At the end of the course the students will have sufficient knowledge of mechanical engineering techniques which will help them to implement them in the life sciences.

PREREQUISITES:

Since the course is technical in nature the students must have the basic knowledge of Math sans Physics.

COURSE DESCRIPTION:

Sr.	Торіс	Description	Hrs
No.			
1	Basics of mechanics	Introduction, Units and Dimensions	5
		Laws of Mechanics	
		Vectors – Victorian representation of forces and moments, Vector	
		operations.	
2	Statics of particles	Coplanar Forces, Resolution and Composition of forces	8
		Equilibrium of a particle, Forces in space	
		Equilibrium of a particle in space, Equivalent systems of forces	
		Principle of transmissibility, Single equivalent force.	
3	Equilibrium of rigid	Free body diagram	8
	bodies	Types of supports and their reactions	
		Requirements of stable equilibrium,	
		Equilibrium of rigid bodies in two dimensions,	
		Equilibrium of rigid bodies in three dimensions.	
4	Properties of surfaces and	Determination of Areas and Volumes	7
	solids	First moment of area and the centroid second and product	
		moments of plane area	
		Parallel axis theorems and perpendicular axis theorems	
		Polar moment of inertia	
		Principal moments of inertia of plane areas	
		Principal axes of inertia	
		Mass moment of inertia & relation to area moments of inertia.	
5	Friction	Frictional Force	5
		Laws of Coloumb friction	
		Simple Contact friction	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

		Rolling Resistance & Belt Friction	
6	Dynamics of particles	Displacement,	8
		Velocity, acceleration & their relationship	
		Relative motion	
		Curvilinear motion	
		Newton's Law of Motion	
		Work Energy Equation of particles.	
		Impulse and Momentum	
		Impact of elastic bodies	
	Total Lectures		42

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

BOOKS RECOMMENDED:

- 1. Beer and Johnson, "Vector Mechanics for Engineers ", Vol. 1 " Statics "and "Dynamics ", Vol. 2. McGraw Hill International Edition, 1995.
- 2. Merriam, "Engineering Mechanics ", Vol.1 "Statics" and Vol.2 "Dynamics" 2nd Edition, Wiley International, 1988.
- 3. Rajasekaran S. and Sankara Subramanian, G., "Engineering Mechanics Statics and Dynamics ". Sangam Books Ltd., 1999.
- 4. Irving, H., Shames, "Engineering Mechanics Statics and Dynamics ", 3rd Edition, Prentice-Hall of India Pvt.Ltd,, 1993.
- 5. Timoshenko and Young, "Engineering Mechanics ", 4th Edition, McGraw Hill, 1995.
- 6. M cLean, "Engineering Mechanics" ", 3rd Edition, SCHAUM Series, 1995.
- 7. Mokashi, V.S., "Engineering Mechanics ", Vol.1 "Statics" and Vol.2"Dynamics ", Tata McGraw Hill Books, 1996.

PRACTICALS IN ENGINEERING MECHANICS(2 Hrs. Per Week)50 Marks

LIST OF EXPERIMENTS:

Sr.	Name of the practical	Time (Hrs)
No.		
1.	Polygon law of coplanar forces.	4
2.	Non concurrent non parallel (general)	4
3.	Bell crank lever	4
4.	Support reaction for beam	4
5.	Simple / compound pendulum	4
6.	Inclined plane (to determine coefficient of friction)	4
7.	Collision of elastic bodies (Law of conservation of momentum)	4
8.	Moment of inertia of fly wheel	4
9.	Screw friction by using screw jack.	4

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
Major test at the end of semester	3 hours	30
Total		100

NAME OF THE COURSE: C PROGRAMMING COURSE CODE: BI 201 MARKS: 200

L	ΤP	Hr	С	
3	0	4	7	5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with programming concepts and apply these concepts to the real world problems.

LEARNING OUTCOME

At the end of this course student should be able to understand how Programming in C Language is done.

PREREQUISITES

Students should have obtained at least 50% marks in the course: Introduction to computers and programming concepts.

Sr. No.	Торіс	Description	Hrs
1	Introduction to C	An overview of C	2
		C expressions	
		Operators	
2	Data types:	Integers long and short	2
		Integers, signed and unsigned	
		Chars, signed and unsigned	
		Floats and doubles	
3	The Decision	The "if" statements within <i>if</i>	4
	controls in C:	Multiple statements within <i>if</i>	
		The " <i>if-else</i> ' statement	
		The ! operator	
		Hierarchy of Logical Operators	
		The Conditional Operators	
4	Loop control	Loops, The "While' Loop, The "for' loop	
	structures:	Nesting of Loops	
		Multiple Initializations in the for loop	
		The " <i>Odd</i> ' Loop, The " <i>break</i> ' statement	
		The " <i>continue</i> ' statement, The " <i>do-while</i> ' statement	
5	Case control	Decisions using switch	1
	structures:	The <i>goto</i> statement	
6	. Functions	What is a function? Why Use Functions	7
		Passing values between functions, Scope of functions	
7	Array & strings:	Single-dimension Arrays, Generating a Pointer to an array, Passing	6
		single-dimension arrays to functions	
		Strings	
		Two-dimensional Arrays, Arrays of Strings	
		Multidimensional Arrays, Array Initialization	
		Variable-Length arrays	
8	Puppeting on	What are Strings?	4

COURSE DESCRIPTION

SYLLABU	S FOR M.TECH (INTEG	RATED) BIOTECHNOLOGY	Dr. D.Y. PATIL VIDYAPEETH, PUNE
ВАТСН (2017-18)		(DEEMED UNIVERSIT1)
	strings:	More about Strings	
	_	Pointers and Strings	
		Standard Library String functions	
		Two-Dimensional Array of Characters	
		Array of pointers to Strings	
		Limitations of Array of Pointers to String	
9	Pointers:	What are pointers?	6
		Pointer variables	
		The pointer Operators	
		Pointer Expressions	
		Pointers and Arrays	
		Initializing Pointers	
		Pointers to Functions	
		C"s Dynamic Allocation Arrays	
		Problems with Pointers	
10	I/O in C:	Types of I/O	4
		Console I/O Functions	
		Disk I/O functions	
		I/O under windows.	
11	Structures,	Structures	4
	Union,	Arrays of structures	
	Enumeration &	Passing structures to functions	
	type definition:	Structure Pointers	
		Unions	
		Bit-Fields	
		Enumerations	
		Typedef	
Total n	umber of lectures		45

METHODOLOGY

The course would be taught through lectures, practical assignments by giving biological problems, quizzes, programming competition and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

RECOMMENDED BOOKS

- 1) The complete reference of C 4th edition by Herbert Schildt
- 2) Let us C By Yashwant Kanitakar
- 3) C- programming by Balaguruswamy
- 4) Data Structure by Kanitakar
- 5) Pointers in C by Kanitakar, Abhyankar
- 6) Data Structure C and C++ by Taneumbam.
- 7) C programming by Keinighan and Ritchite

PRACTICAL IN C PROGRAMMING (4 Hrs. Per Week)

LIST OF PRACTICALS

- 1. 8 programs in basic programming in C
- 2. 8 programs using Decision Controls in C
- 3. 8 programs using Loop and Case Control structure
- 4. 8 programs illustrating use of function
- 5. 10 programs illustrating use of arrays and Structure
- 6. 5 programs using Pointers
- 7. 10 programs for Biological application
 - Finding complement of DNA
 - ORF finding
 - Inverted Repeats
 - Motif finding
 - Translation
 - Transcription etc.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
Major test at the end of semester	3 hours	60
Total		100

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) **COURSE CODE: BS 204 COURSE NAME: ENVIRONMENTAL SCIENCE MARKS: 150**

L T P Hr Cr 3025 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the problems related to environmental pollution, loss of natural resources, climate change, solid waste disposal, biodiversity and social issues due to environmental degradation. It is also important for them to develop clear understanding of biodiversity and its conservation.

LEARNING OUTCOME

At the end of this course student should be able to understand importance and need of sustainable development.

PREREOUISITES

1

2

3

4

5

Since the course is very basic in nature there are no prerequisites.

Seq. Topic Description No Natural Resources Land, water, food, forest, mineral and energy resources, their and associated use, over-exploitation and conservation. problems Concept, structure and function of ecosystem. Producers, Ecosystems Consumers and decomposers, Energy flow in ecosystem. Ecological succession and pyramids, Food chains, food webs and ecological pyramids. Characteristic features of Forest, Grassland, Desert and Aquatic Ecosystems. Definition, Causes, Effects and control measures of Air, Water, Environmental Soil, Noise, thermal and Marine Pollution. Nuclear hazards and Pollution Solid waste management. Role of an individual in prevention of Pollution and Pollution case studies Genetic, species and ecosystem diversity. Value of Biodiversity: Biodiversity and its Conservation social, ethical, aesthetic and option values. India as a mega diversity nation. Hotspots of Biodiversity. Threats to Biodiversity: Habitat loss, poaching of wildlife, man wild life conflicts. Endangered and Endemic species of India. Conservation of Biodiversity: in situ and ex situ conservation of biodiversity Urban problems related to energy. Water conservation, Rain Social Issues and the Environment water harvesting, and watershed management. Resettlement and rehabilitation of people. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust,

Wasteland reclamation: Case studies. Environment protection Acts: Air (Prevention and control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife protection

COURSE DESCRIPTION

Hrs

8

6

8

8

7

		Act. Forest Conservation Act. Issues involved in enforcement of	
		environmental legislation. Environmental ethics: Issues and	
		possible solutions. Public awareness	
6	Human Population and Environment	Population growth. Population explosion- family welfare programs. Environment and Human Health. Human Rights. HIV/ AIDS and Women and Child welfare. Role of Information and Technology in environment & human health	
7	Field work	Visit to a local area to document environmental assets River/forest/grassland/hill/mountain Visit to local polluted site- Urban/Rural/Industrial/Agricultural Study of Common plants, insects, birds. Study of simple ecosystems- pond, river, hill slopes, etc	5
		Total number of lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and field work. The students will undertake field trip to sensitive hot spots in Western Ghats to observe and collect samples of Flora and Fauna for on the spot studies, collection and identification of specimens. These would be evaluated on the basis of report presented by the students

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

BOOKS RECOMMENDED:

- Agarwal, K. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- Bharucha Erach, The Biodiverstiy of India, Mapin Publishing Pvt. Ltd. Ahmedabad-380013, India, Email: <u>mapin@icenet.net (R)</u>
- Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill
- Inc.480p Cark R.S., Marine Pollution, Clanderson press Oxford (TB)
- Cunnigham, W.P.Cooper, T.H. Gorhani, E & Hepworth M.T. 2001

Teaching hours per week and credits for practicals only: 2 Hr 1 Cr Marks for Practicals: 50

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for
No.			reference and videos
1.	To study physicochemical properties of soil (pH, conductivity, moisture content, carbonate content, salinity, porosity)	To know about variations of soil properties and to determine their suitability for a particular purpose	Bandyopadhyay PC. Soil Analysis, Gene-Tech books, New Delhi, India. 2007.
2.	Identification and enumeration of zooplanktons and phytoplanktons as indicator of water pollution	To differentiate polluted and non- polluted sites based on plankton data	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen

			S. P. De Gelder, 2013.
3.	To identify and characterize normal microflora in air, water and soil	To know presence of normal microflora within environment.	Cappuccino JG & Sherman N. Microbiology, A laboratory Manual , 10 th ed. Dorling Kindersley, Pearson Benjamin Cummings, 2014.
4.	Determination of MPN from water samples	Determine potability of water	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
5.	Estimation of chlorine in drinking water using colorimetric method	Understanding of residual amount of chlorine in water as a health hazard	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
6.	Estimation of relative humidity of the atmosphere	To understand relationship between weather and humidity	Mudakavi JR. Principles and Practices of air pollution analysis. I K International Publishing House Pvt. Ltd., New Delhi, India, 2010.
7.	Estimation of dissolved oxygen in the given water sample	To understand importance of BOD and COD	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
8.	Study the effects of pollutants (e.g., heavy metals) on flora	To understand effect about pollution	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 ^{ru} ed. CRC Press,
			United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
9.	Determination of NO ₂ from the atmosphere by Colorimetric method using high volume sampler (Optional)	To understand more about atmospheric condition	Mudakavi JR. Principles and Practices of air pollution analysis. I K International Publishing House Pvt. Ltd., New Delhi, India, 2010.
10.	Determination of K ₂ O value of soil by flame photometer (Optional)	To understand about Quality of soil	Bandyopadhyay PC. Soil Analysis, Gene-Tech books, New Delhi, India. 2007.

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks) Journal writing: 5 marks

SEMESTER III

Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BS 301	Analytical Techniques		0	4	7	5	200
BS 302	Cell Biology		0	2	5	4	150
BS 303	Microbiology	3	0	4	7	5	200
BS 304	Genetics	3	1	2	6	5	150
BS 305	Mammalian Physiology	3	1	0	4	4	100
BT 301	Plant Physiology	3	1	0	4	4	100
	Total	18	3	12	33	27	900
	•				1	1	

TITLE OF THE COURSE: ANALYTICAL TECHNIQUESCOURSE CODE: BS-301L T P Hr CMARKS: 1003 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to create general understanding of microscopy, electrophoresis, X-ray crystallography, Infra-red spectroscopy, Ultra-violet spectroscopy, nuclear magnetic resonance spectroscopy, mass spectroscopy, CD & ORD spectroscopy. They would also understand the importance of analytical tools in biotechnology & its applications in various industries

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in instrumentation used in Biotechnology. This is essential because he would be using these techniques in forth coming semesters.

PREREQUISITES:

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Centrifugation	Introduction: Basic principles of sedimentation	03
		Types of centrifuges	
		Design of centrifuges: Types of rotors	
		Ultracentrifuge: Analytical and Preparatory	
2	Colorimetry and	Properties of electromagnetic radiations, interaction with	02
	Spectroscopy	matter.	
		Ultraviolet spectroscopy: Origin of UV spectra, types of	
		transition, chromophore & related terms, effect of conjugation,	04
		choice of solvent, instrumentation and applications	
		Infra-red spectroscopy: Origin of infra-red spectra, modes of	04
		vibrations, instrumentation, sampling technique and	
		applications	
		Nuclear magnetic resonance spectroscopy: Origin of NMR,	06
		continuous wave spectrometer, chemical shifts, spin-spin	
		coupling, Karplus equation & curve, anisotropic effect,	
		compounds containing C^{13} , P^{31} & F^{19} , applications of NMR.	06
		Mass Spectroscopy: Origin, Instrumentation, types of ions	00
		produced, interpretation and applications of mass spectra	
		GCMS, LCMS & MSMS	
3	Chromatography	Introduction: Chromatography theory and practice.	09
		Paper chromatography.	
		Thin layer chromatography.	

COURSE DESCRIPTION

		Ion exchange chromatography.	
		Affinity chromatography.	
		Partition chromatography.	
		Adsorption chromatography.	
		Introduction to gas chromatography and HPLC.	
		Permeation.	
4	Electrophoresis	General principle, support media.	05
		Agarose gels, polyacrylamide gels.	
		SDS PAGE, 2D PAGE	
		Pulsed field gel electrophoresis	
		Iso-electric focusing	
		Capillary electrophoresis	
5	Introduction to	Introduction, origin of x-rays, Bragg"s equation,	05
	x-ray	instrumentation and applications of x-ray absorption,	
	crystallography	instrumentation and applications of x-ray diffractions	
	and Diffraction		
6	Introduction to	Theory & applications of ORD & CD, the octant rule,	04
	ORD & CD		
Tota	l Lectures		48

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

Practical Biochemistry – Wilson and Walker.

A Biologist"s guide to principle and techniques of practical biochemistry –Wilson and Golding.

Principles of Instrumentation-Skoog. Analytical Chemistry- Anand and Chatwal. Analytical Chemistry – David Friefelder Biophysical chemistry by Nath and Upadhyay. Spectrometric

PRACTICAL IN ANALYTICAL TECHNIQUES (4 Hrs. Per Week)

MARKS : 100

LIST OF PRACTICALS

Teaching hours per week and credits for practicals: 4 hrs, 2 cred	lits
---	------

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
	Lab orientation, acquaintance with infrastructure and instruments.	Developing competence and encourage hands on usage and maintenance of facilities and equipment's. SOPs and safety practices.	An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition
1.	Preparation of various common buffers such as Phosphate buffer saline (PBS), Tris buffer saline (TBS), Tris acetate buffer	To understand the preparation of various common buffers and its use in biological system, To understand the concept of molarity, normality etc., Measurement of pH, To understand, why a particular buffer is preferred for a particular range of pH	Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition
2.	To study and understand the process of dialysis	Knowhow of preparation and usage of dialysis bag. Application of dialysis process, molecular weight cut off and desalting of proteins.	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
3.	Separation of various amino acids using paper chromatography and calculation of retention factor (R _f) value	To understand the principle of partition chromatography, technique of paper chromatography and calculation of R_f value of given unknown amino acids using the standard amino acids.	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition
			International (P) Limited, Publishers
4.	Separation of various amino acids using Thin Layer chromatography (TLC) and calculation of Retention factor (R _f) value	To understand the principle of partition chromatography, techniques of thin layer chromatography and calculation of R_f value of given unknown amino acids using the standard amino acids.	 Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers
5.	To study the elution profile of given proteins (e.g. BSA, ovalbumin, lysozyme) on Sephadex G-50 / G- 100 column	 To know the preparation of the matrix, column packing, calculation of the bed volume, void volume and flow rate etc. To determine the elution profile of given protein by taking absorbance at 280 nm and to understand the principle of molecular- sieving. Various application, desalting, protein separation etc. 	 Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition Handbooks from GE Healthcare Life Sciences, Size Exclusion Chromatography Principles and Methods www.gelifesciences.com/handboos

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
6.	To study and determine the functioning of high performance liquid chromatography (HPLC)	 To understand the principle of HPLC and functioning of the various parts of HPLC system. To study the elution profile of the BSA using gel filtration column (on TSK- GEL gel filtration column from Tosoh Bioscience) 	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York
7.	Estimation of protein by various methods such as Lowry's and Bradford.	To understand the principle of method, preparation of calibration curve with standard protein and calculation of concentration of unknown protein sample.	Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition
8.	To find out the concentration of given bovine serum albumin (BSA) solution in mg/ml.	 What is percent extinction coefficient? What is the percent extinction coefficient of BSA and standard proteins? How will you calculate the concentration of given protein solution using percent extinction coefficient in mg/ml? 	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Extinction Coefficients, A guide to understanding extinction coefficients, with emphasis on spectrophotometric determination of protein concentration, https://tools.thermofisher.com/conte nt/sfs /brochures/TR0006-Extinction- coefficients.pdf

Sr.	Name of the	Learning objective	Literature/ Web links for
9.	To estimate the molecular weight of given protein using Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE)	 1.To study the principle and technique of SDS-PAGE for the separation of proteins 2. To check the purity of the protein using SDS-PAGE 3. Preparation of the standard curve (using standard protein provided) for estimation molecular weight of protein. 	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition
10.	Centrifugation: Cell pelleting, sub- cellular fractionation of cell extract, handling of various type of centrifuges.	 To understand the basics of centrifugation. Demonstration of various type rotors, their function and use. Demonstration of functioning of various types of centrifuges. 	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
Major test at the end of semester	2.5 hours	60
Total		100

TITLE OF THE COURSE: CELL BIOLOGY	
COURSE CODE: BS 302	L T P Hr C
MARKS: 150	302 54

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic concepts of cell Biology. This is essential for taking further courses in Biotechnology during the next couple of years.

LEARNING OUTCOME:

At the end of this course, student should be able to comprehend essentials of cell Biology useful for their understanding at the later stage.

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) PREREQUISITES

This is an introductory course. There are no prerequisites for the course.

COURSE DESCRIPTION

Sr. No	Торіс	Description	Hrs
1	Cell as basic unit of living systems (Prokaryotes, Eukaryotes)	Pre-cellular evolution: artificial evolution of cells, Broad classification of cell types, how cells are studied	4
2	Biochemical composition of cells	Proteins, Lipids, Carbohydrates, nucleic acids and Metabolic pool	5
3	Ultra-structure of the cell	Cell membrane and special functions of membrane	3
4	Structure and function of cell organelles	Cytosol, Golgi bodies, ER (smooth and rough), Cytoskeleton structures (action, microtubules etc.), Mitochondria, Chloroplasts, Lysosomes, Nucleus	14
5	Cell-cell Interaction	Germ cells and Fertilization, Cellular mechanisms of development	3
6	Cell division and cell cycle,		5
7	Differentiated cells and the maintenance of tissues		5
8	Cell senescence and death		5
Total	Number of lectures		44

METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Cell and Molecular Biology by De Robertis. Molecular Biology of Cell by Bruce Alberts 2002. The cell by Cooper 2000
- 2) Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P. S Verma and VK Agarwaal. Publisher S. Chand and Comp. 2005
- 3) Cell Biology by Powar

Teaching hours per week and credits for practicals: 2 hrs per week, 1 cred
--

Sr. No	Name of Experiment	Learning objective	References
1.	Introduction to the	To get acquainted with the	Fundamentals of
	instruments used in	instruments and SOP for the	Light microscopy
	cell biology	various instruments.	And electronic
	(Microscope,	This Exercise focuses on how to	Imaging, Douglas B. Murphy;
	Biosafety Cabinets,	develop a working knowledge of	A John Wiley & Sons, Inc.,
	Incubators,	the Microscope and its use.	Publication.
	Centrifuges, Pipettes)	Students should identify the	
		different parts of the Microscope	
		and safe handling.	
2.	Study of different cell	Students should be able to	Fundamentals of
	types under	differentiate between prokaryote,	Light microscopy
	microscope	eukaryote cells	And electronic
		Should be able to differentiate	Imaging, Douglas B. Murphy;
		between plant and animal cells	A John Wiley & Sons, Inc.,
		Should be able to differentiate	Publication.
		between cells from different	
		tissues	
3.	Slide preparation and	Cross-sectioning of monocot and	A Text-Book of Histology
	staining (plant)	dicot plant root, stem and leaf	Descriptive and Practical. For
		Staining and slide preparation	the Use of Students
		Identification of different	Author(s):
		anatomical features	Arthur Clarkson
		Preparation of permanent slide	ISBN: 978-1-4832-2783-2
			Methods in plant histology
			The university of chicago
			press
			Chicago, Illinois
	D1 10		The Baker & Taylor Company
4.	Blood Smear	A classical method for	Dacie and Lewis
	Preparation and	identification of blood cell	Practical
	differential staining.	preparation.	Haematology
			Eleventh Edition, Barbara
			Bain Imelda Bates Mike
			Lattan S. Lewis

Sr. No	Name of Experiment	Learning objective	References
5.	Buccal smear –	A quick cytological method for	Acta Cytologica 2013;57:516-
	Identification of Barr	identification of sex in mammals-	521
	Body	an extreme case of chromosomal	(DOI:10.1159/000353216)
		condensation.	Cytological Assessment of
			Barr Bodies Using Aceto-
			Orcein and Papanicolaou
			Stains in Buccal Mucosal
			Smears and Their Sex
			Estimation Efficacy in an
			Indian Sample, Datar U. ·
			Angadi P.V.Hallikerimath S. ·
			Kale A.D, Acta Cytologica
			2013;57:516-521
			(DOI:10.1159/000353216)
6.	Mitosis in Onion	To study mitosis using Onion root	Conly L. Rieder. Academic
	Root-Tip Cells	tip cells.	Press, 1999 - Science Volume
			61 of Methods in cell biology,
			ISSN 0091-679X
7.	Meiotic cell division	To perform Meiotic cell division	Conly L. Rieder. Academic
	in grasshopper testis	in the given sample	Press, 1999 - Science Volume
			61 of Methods in cell biology,
			ISSN 0091-679X

PRACTICAL IN CELL BIOLOGY

(2 hrs per week)

Marks 50

LIST OF EXPERIMENTS

- 1. Microscopes- Different types of microscopes
 - Compound microscopes
 - Stereoscopic microscope 2.

Observations of permanent slide

- Stem Transverse Section Dicot Stem
- Transverse Section Monocot Different
- types of Animal Cell
- 3. Mitosis Slide preparation and cell division
- 4. Meiosis Slide preparation and cell division.
- 5. Preparation of slides and staining Leaf Transverse Section and Stem Transverse Section

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting		30
Total		50

TITLE OF THE COURSE: MICROBIOLOGY COURSE CODE: BS-303 MARKS: 200

LTP	Hr C
304	75

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with bacteria and viruses, their structures, metabolism, diseases caused by bacteria and viruses and their control.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of bacteria and viruses and diseases caused by them.

PREREQUISITES

Since the course is very basic in nature, school level knowledge in biology is sufficient to take the course and there are no prerequisites.

Sr.	Торіс	Description	Hrs
No.			
1	Introduction to	Scope and history of Microbiology. Characterization,	6
	Microbiology	classification and identification of microorganism.	
		Microscopic examination (Staining and microscopic	
		techniques)	
2	Microorganism-	Morphology and fine structure of bacteria. Cell wall structure	16
	Bacteria	in details. Cultivation of bacteria. Reproduction and growth.	
		Growth kinetics. Isolation and preservation.	
3	Control of	Control of By physical and chemical agents. Role of	4
	Microorganisms	antibiotics and chemotherapeutic agents	
4	Microbial	Microbial metabolism: Utilization of energy in Non-synthetic	4
	Physiology/	pathways (bacterial motility and transport of nutrients),	
	Metabolism	Biosynthetic processes. Novel bacterial pathways. Energy	
		production	
5	Microbial organisms	Host microbe interactions. Diseases caused by bacteria	4
	and diseases		
6	Microbes and	Symbiosis and antibiosis among microbial populations. N_2	10
	environments	fixations in agriculture	
7	Viruses	Classification, structure and characterization of viruses	4
		Total number of Lectures	48

COURSE DESCRIPTION

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

1) BOOKS RECOMMENDED:

- 2) General Microbiology: Vol. I & 2 by Powar & Daginawala
- 3) Microbiology by Pelczar
- 4) Microbiology by Prescott
- 5) General Microbiology by Stanier
- 6) Instant notes in Microbiology by Nicklin.
- 7) Principle of Fermentation technology by Stanbury & Witter

PRACTICAL OF MICROBIOLOGY (4 hours per week) Marks: 100

LIST OF EXPERIMENTS:

- 1. Introduction to lab apparatus (instruments and glassware).
- 2. Washing, plugging & sterilization of test tubes.
- 3. Study of microscope & observation of permanent slides (mitosis, meiosis, prokaryotic and Eukaryotic cells.
- 4. Preparation of media-NA (nutrient agar), NB (nutrient Broth), PDA, (Potato dextrose agar) and LB media
- 5. Isolation of microbes from soil sample on nutrient agar slants.
- 6. Isolation of microbes from soil & bacterial suspension by streak plate method. Observation of microbial growth & study of colony characteristics
- 7. Staining Of Microbes:
 - a. Monochromal
 - b. Negative Staining,
 - c. Grams Staining.
- 8. Endospores staining by Schaeffer and Fulton"s method).
- 9. Effect of Environmental parameters on growth of microorganisms.
 - a. Effect of pH.

- b. Effect of temperature.
- c. Effect of Buffered & unbuffered media.
- d. Effect of Osmotic pressure.
- 10. Growth curve of E.coli.
- 11. Testing of antiseptics & dyes in the control of microorganisms.
- 12. Metachromatic granules staining.
- 13. Counting of cells (of micro organisms by pour plate and spread plate technique/by Hemo cytometer)

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF COURSE: PLANT PHYSIOLOGY	L T P Hr C	
MARKS: 100		31044
COURSE CODE: BT 301		

OBJECTIVE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Plant Physiology and metabolism.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of plant physiology.

PREREQUISITES

Since the course is very advance in nature, student must know about different plant hormones and basic knowledge of plant anatomy and physiology.

COURSE DESCRIPTION:

Sr.	Торіс	Description	Hrs
No.			
1	Introduction (special features of plants including anatomy, histology of plant tissues)		3
2	Nitrogen fixation	Historical background. Nitrogen cycle in nature. Symbiotic nitrogen fixation. Nitrogenase system, nitrate reductase.	4
3	Plant hormones	Auxin, Gibbrellins, Cytokinins, Ethylene, Abscissic acid-	8

		Discovery, effect on growth and development. Gibberilins- Discovery, effect on growth and development. Cytokinins- Discovery, effect on growth and developmeAbscisic acid	
		Ethylene.	
4	Phytochrome action and circadian rhythms.	The photochemical and biochemical properties of Phytochrome. Localization of Phytochrome in tissues and cells. Characteristic of Phytochrome.	4
5	Biochemistry of seed germination.		2
6	Seed storage proteins.		2
7	Physiology of flowering		2
8	Physiology of fruit ripening.		2
9	Secondary metabolites	Gums, pectins, alkaloids, flavonoids, rubber, essential oils and anthocyanins.	6
10	Plant nutrition deficiency (natural and synthetic)	Micro, macro, natural and synthetic nutrients and their deficiency syndrome	3
11	Stress physiology.	Water stress, Heat Stress, Chilling and Freezing stress Salinity stress. Temperature (high/low)	6
12	Plant metabolism-Photosynthesis	Intracellular organization of photosynthetic system. Fundamental reactions of photosynthesis, photosynthetic pigments, role of light. Hill reaction and its significance, light reactions, cyclic and non-cyclic photo induced electron flow, energetics of photosynthesis, photorespiration, dark phase of photosynthesis, Calvin cycle, C-4 pathway, CAMP	6
		Total	48

METHODOLOGY

The course would be taught through lectures, demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Plant Physiology by Lincon Taitz (Amazon Publication)
- 2) Plant Physiology by Conn and Stumpf
- 3) Plant Physiology by Noggle and Fritz
- 4) Plant Physiology by Sallisbury and Ross
- 5) Plant Physiology by Devlin

COURSE NAME: GENETICS COURSE CODE: BS 304 MARKS: 100

LT P Hr C 3 1 2 6 5

OBJECTIVE OF THE COURSE:

In view of the increasing demand for training manpower in the area of Genetics, Molecular Biology, Genetic Medicine and Biotechnology, it was consensus of the committee (Faculties & experts) that this course should be broad based and should be able to give a good insight into modern biology and important component of hands-on training to the students.

Sr.	Topic	Description	Contact
No.			Hours
1	Mendel ^{**} s Principles of inheritance.	Mendel"s experimental organism, the green pea. Monohybrid cross: The principle of dominance and segregation. Dihybrid cross: The principle of Independent assortment. Application of Mendel"s Principles Punnett Square. Forked Line Methods, Probability Chi Square method. Mendel"s Principle in Human Genetics.	8
2	Extension of Mendel ^{**} s Principles allelic variation and gene function.	Pedigree. Mendel's segregation in Human families.Incomplete dominance and co-dominance.Multiple alleles.Allelic series.Variation among the effect of the mutation.Gene functions to produce polypeptides.Gene Action: Genotype and phenotype.Influence of the environment.Environmental effect on the expression of the HumanGenes.Gene Interaction. Epistasis.	5
3	Chromosomal basis of inheritance	Chromosome Chromosome Number. Sex Chromosome. The chromosomal theory of heredity. Experimental evidence linking the inheritance of genes to chromosome. Chromosome as arrays of gene. Non-disjunction as proof of the chromosome theory. Chromosomal basis of Mendel"s Principles of segregation and Independent assortment.	8

COURSE DESCRIPTION

DATEN	(2017 10)		
		Sex Linked Gene in Human Beings.	
		Sex Chromosome and Sex Determination.	
		Dosage Compensation of the X- linked genes.	
4	Cytogenetics	Cytogenetical techniques.	5
		Variations in chromosome structure.	
		Variations in chromosome number.	
5	Non-Mendelian	Evidences for Cytoplasmic factors, cytoplasmic inheritance,	6
	inheritance	extranuclear inheritance (mitochondrial, chloroplast), non-	
		chromosomal inheritance, maternal linheritance, uniparental	
		inheritance.	
6	Genetic analysis of	Model organism for genetic analysis of development.	5
	development	Development results from differential gene expression.	
		Genetic study: Genetic Regulation of the development of	
		the Drosophila body plan	
7	Population	Theory of allelic frequencies.	5
	genetics.	Natural Selection.	
		Random Genetic Drift.	
		Total Lecture	42

METHODOLOGY

The course would be taught through lectures, demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

TEXT BOOKS:

A text book of genetics by Sambhamurthy

REFERENCE BOOKS:

- Genetics by Russell
 Genetics by Klug

- 3) Genetics by Imag3) Genetics by Tamarind4) Genetics by Snustad & Simmons
- 5) Genetics by C.B Powar
- 6) Genetics by B.D Singh
- 7) Genetics by Pierce

PRACTICAL IN GENETICS (2 Hrs. Per Week) MARKS 50

Objective of the course: The objective of the course is to familiarize the students with Genetic Subject

List of Practical"s

- Model Organisms and their significance in Genetic studies: Mendalian inheritance in Pea plants Virus – TMV (Tobacco leaves) Bacteria – E coil (slide) Neurospora and Yeast (slides) Paramecium (slides) Coenorhabites elegans. Drosophila melanogaster – Life Cycle Mosquito (Anopheles and Culex) – Life cycle Dissected reproductive system of Rat -Maize, Pea, Arabiodopsis – Life Cycle
- 2) Induction of polyploidy in Onion root tips.
- 3) Methyl Green-Pyronin Staining of DNA
- 4) Dermatoglyphs of human fingers
- 5) Human Karyotype.
- 6) ABO Blood Gr
- 7) Genetic traits in population
- 8) Founder Effect
- 9) Isolation of Mitochondrial DNA
- 10) Plasmid DNA isolation
- 11) B Thalassemia
- 12) VNTR marker
- 13) Replica Plate Techniques
- 14) Growth curve analysis

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

NAME OF THE COURSE: MAMMALIAN PHYSIOLOGYCOURSE CODE: BS 305L T P Hr CMARKS: 1003 1 0 4 4

OBJECTIVE OF THE COURSE:

The objective of the course is to develop insight of physiological aspects of the mammalian systems with respect to various interactions occurring with all the major organs of the body.

This course will aim to develop skills linked to the understanding of the scientific literature that are introduced through different subjects like Microbiology, Cell Biology, Immunology and Pharmacology.

The course is well equipped to deal with branches of biophysics, biochemistry and clinical applications as well.

LEARNING OUTCOME

The course would enable the student to understand the integral mechanism operating in the mammalian system along with the regulation of each system.

ALSO THE STUDENTS SHOULD:

Have an enhanced knowledge and appreciation of mammalian physiology

Have gained knowledge of a number of important physiological systems including the endocrinology, nervous system and reproductive systems

Be able to recognize and identify the principle tissue structures in those systems.

Be able to analyze and extrapolate from their knowledge of the separate systems to discuss physiological responses to challenges such as exercise, fasting and ascent of altitude.

PREREQUISITES

Since the course is very basic in nature school level knowledge in physics, chemistry & Biology is enough to take the course and there are no prerequisites.

Sr.	Торіс	Description	Hrs
No.			
1	Basic concepts and	Introduction and background (homeostasis, control systems).	4
	principles:		
2	The Physiology of	Anatomy and Histology of digestive system, Movement of	7
	Digestive system.	food and absorption, Secretary functions of alimentary canal,	
		digestion and absorption in gut, (liver and biliary system).	
3	Physiology of	Blood composition, blood pressure, and edema. The special	4
	Circulatory System.	fluid systems of the body – cerebrospinal, ocular, pleural,	
		pericardial, peritoneal and synovial fluids. Regulation of the	

COURSE DESCRIPTION

circulation, mean arterial pressure and hypertension, cardiac
output and venous return, circulatory shock and its
physiology, cardiac failure, coronary circulation.

4	Physiology of respiratory system	Anatomy and Histology of Respiratory organs. Pulmonary ventilation: Physical principles of gaseous exchange transport	4
		of O_2 and CO_2 in the blood and body fluids. Chloride & reverse chloride shift	
5	Body fluids and Kidney-	Anatomy and histology of Kidney Osmotic equilibrium	4
	Physiology.	between extra cellular and intracellular fluids, Formation of	
		urine by kidney, glomerular filtration and tubular function	
		regulation of urine concentration and auto regulation.	
6	Endocrinology:	Histology of important glands like The pineal gland, Adrenal gland and their hormones: functions and disorders. Thyroid gland and their hormones: functions and disorders.	4
		Insulin, glucagons and related disorders. Parathyroid hormone, calcitonin and calciterol. Sex hormone: progesterone, estrogen and testosterone.	
7.	Reproductive system-	Male and female systems,	5
	Physiology	Histology of male and female reproductive organs. Maintenance of female reproductive system, Female Reproductive Cycle, Sex hormones in puberty, menstrual cycle, menopause and inhibin function.	
8.	Nervous system-	Parts of the nervous system, Structure and function of sensory	8
	Physiology	receptors, Neural circuits and Nerve conduction.	
9.	High altitude and space	Effect of low oxygen pressure, Effect of high altitude on	4
	physiology:	physiology, Artificial climate in the sealed spacecraft, Weightlessness in space.	
10.	Physiology of deep sea	Effect of high pressure and decompression on diver,	4
	diving and other hyper baric candidates.	Hyper baric oxygen therapy.	
	1	Total number of lectures	48

METHODOLOGY

Lectures supported with PowerPoint presentation. Lectures and in-class activities are intended to complement assignment. Thus the course will be covered through lectures supported by tutorials. Students will be given seminar topics of their own interest from their syllabus. Again students are expected to collect review and make power point presentations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10

REFERENCE BOOKS

- 1) Textbook of Medical Physiology by C. Guyton.
- 2) Physiology by C. Chatterjee.
- 3) Human Anatomy & Physiology by Tortora.
- 4) Medical Biochemistry Anant Narayan
- 5) Text Book of Biochemistry by Harper Ed. 1988
- 6) Medical physiology by Chaudhary.
- 7) Anatomy and histology by Ross and Wilson
- 8) Human Anatomy and Physiology by Creager

SEMESTER IV							
Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BT 401	Molecular Biology-I	3	0	4	7	5	200
BT 402	Metabolism	3	1	0	4	4	100
BT 403	Animal Tissue Culture	3	0	2	5	4	150
BT 404	Plant Tissue Culture	3	0	2	5	4	150
BT 405	Immunology	3	0	2	5	4	150
BI 301	Concepts in Bioinformatics	3	0	4	7	5	200
Total 18 4 14 33 26 950							

TITLE OF THE COURSE: MOLECULAR BIOLOGY I COURSE CODE: BT-401 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in molecular biology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of DNA structure, Replication, Transcription, Translation, Mutation, Recombination and Gene Expression .

PREREQUISITES

Since the course is very advance in nature, student must know about Gene structure and gene regulation. Student must have background with Genetics.

Sr.	Торіс	Description	Hrs
No.			
1	Introduction: Chemistry	What is gene? Molecular basis of genes,	4
	and Genetics	DNA as genetic material,	
		Meselson and Stahl experiment for semiconservative mode	
		of DNA replication,	
		What is Genetic Variation.	
		Origin of Genetic variability	
		Genetic information conveyed by sequences of nucleotides	
		(central dogma),	
		discovery of RNA, synthesis of m-RNA,	
		what is genetic code. properties of genetic code	
		establishment of genetic code	
2	Structure and	Structure of DNA (Structure of purines, pyrimidines, De-	6
	Maintenance of	oxy ribose sugar, Phosphoric acid, Nuceosides and	
	Genome:	Nucleotides)	
		Structure of RNA	
		What is Chromosome? Structure of chromosome, what is	
		chromatin? Chromosome and chromatin diversity	
		Chromosomal duplication and segregation, Nucleosome	
		structure	
		Higher order chromatin structure, Regulation of chromatin	
		structure	
		Mitochondrial genome	
3	Replication of DNA in	Chemistry of DNA synthesis, Mechanism of DNA	7
	Prokaryotes and	polymerase, replication fork (Okazaki fragments)	
	Eukaryotes:		
		Termination and control of DNA replication.	
4	Mutation and DNA	Types of mutations.	4
	repair	Replication errors and their repairs.	
		DNA damage and repair.	
5	Recombination:	Homologous recombination at molecular level: models of	10

COURSE DESCRIPTION

0, 0	(201/ 10)		
		homologous recombination,	
		proteins in homologous machines,	
		homologous recombination in prokaryotes and Eukaryotes,	
		mate typing, genetic consequences of mechanism of recombination. Site specific recombination and transposition of DNA: conservative site specific recombination, biological roles of sites recombination, transposable elements, and their regulations, V9DJ recombinants Gene conversion.	
6	Transcription &	Transcription & Translation in Prokarotes	6
	Translation	 (role of proteins and factors etc.) Transcription &Translation in Eukaryotes (role of proteins and factors etc.) RNA Splicing and RNA editing 	
	Expression:	Prokaryotes, Lac Operon and Catabolite repression Eukaryotes, Transcription Factors Yeast, Protozoan Gene organization & expression in mitochondria and chloroplast Post translation regulation of gene expression Development and environmental regulation of gene expression	
8	Oncogenes and Cancer:	Tumor cells, tumor suppressors genes, Transforming viruses	4

METHODOLOGY

The course would be taught through lectures and assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Instant notes in Molecular Biology by Turne.
- 2) Microbial Genetics by David Freifelder.
- 3) Molecular Biology by David Freifelder.
- 4) Molecular Biology of Gene Watson, Baker et.al. 5th Edition
- 5) Molecular Biology of the Cell by Alberts.
- 6) Genes by Lewin and Benjamin.

Teaching hours per week and credits for practicals only: 4 Hr 2 Cr Marks for Practicals: 100 Marks

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of glassware, plasticware, reagents and stock solutions for molecular biology	Special preparations for carrying out molecular biology experiments	Sambrook J, Edward F, Maniatis T. Molecular
2	To isolate DNA from a) bacteria b) animal tissues/cells c) plant material using appropriate methods	To understand the critical requirement of specific methods depending on source of DNA	cloning Vol. 2. 2nd ed. New York: Cold spring harbor laboratory press; 1989.
3	Quantification of DNA by UV absorption and analysis by agarose gel electrophoresis	To understand the quality, and quantity of DNA present per cell	
4	To isolate plasmid DNA from bacteria, restriction analysis and agarose gel electrophoresis	To distinguish between plasmid and genomic DNA in terms of size and migration properties in gel	
5	To isolate RNA from eukaryotic cells and analyse by denaturing formaldehyde agarose gel electrophoresis	To understand various types of RNA/RNA profile and quality of RNA preparation	
6	To find the Melting temperature of DNA	Measure temperature and estimate T_m from your data	
7	Isolation of nuclei, calcium activation of endonuclease resulting DNA ladder including the mononucleosome formation	Hands-on verification of the concept of chromatin structure	
8	Extraction of histone from nuclei and analysis by SDS- PAGE	Understanding the contribution of histones in the formation of chromatin	

Internal evaluation will be based on following criteria

For practicals of 2 credits and 100 marks, internal evaluation will be for 40 marks with following break-up:

Practical: 10 marks

Attendance: 10 marks (above 80% attendance gets full marks) Laboratory assignment: 10 marks and Journal writing: 10 marks

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) TITLE OF THE COURSE: METABOLISM COURSE CODE: BT 402 MARKS: 100

L T P Hr C 3 1 0 4 4

OBJECTIVE OF THE COURSE:

Metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. These processes allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The objective of the course is to familiarize the students to these various chemical reactions occurring in ones own body and the other living organisms alike.

LEARNING OUTCOME:

At the end of the course, students will have sufficient systematic and comprehensive knowledge about basic metabolism which will help them relate to the different physiological processes taking place in the cell and how inanimate chemicals cause life.

PREREQUISITES

The course requires that the students are well versed with properties and characters of biomolecules that they have learnt in their semester II, course no 202.

Sr. No.	Торіс	Description	Hrs
1	Survey of metabolism	Introduction to metabolism-catabolism, anabolism and intermediary metabolism	1
2	Glycolysis	Two phases of glycolysis-detailed study of all the reactions Energy balance sheet, regulation of glycolysis by enzymes and hormones, Anaerobic pathway of glucose metabolism.	3
3	Gluconeogensis & Glycogen Metabolism	Bypass reactions Regulation of gluconeogenesis by enzymes and hormones. Glycogenolysis and glycogenesis	6
4	Citric acid cycle(TCA)	Aerobic pathway of glucose metabolism- detailed study of all the reactions Balance sheet. Regulation of the cycle	4
5	Alternate pathway of carbon metabolism	Pentose phosphate pathway (HMP shunt).	2
6	Lipid Metabolism	Requirement of carbon dioxide and citrate for biosynthesis, FAS complex & Regulation of biosynthesis β oxidation of monounsaturated and polyunsaturated fatty acids, Energetics of β oxidation,ketone bodies.	2
7	Oxidative phosphorylation	Oxidative phosphorylation, structure of ATPase enzyme, chemiosmotic hypothesis. Complexes I, II, III and IV-components and structure.Reactions of the electron transfer.	5
8	Biosynthesis of triglycerides and membrane phospholipids	Biosynthesis of triglycerides and its hormonal regulation, phospholipids from CDP-diacyglycerol, plasmalogens, sphingolipid, glycerophospholipid, PDGF. Cholesterol from acetyl CoA, fates of cholesterol, regulation of cholesterol	9

COURSE DESCRIPTION:

hormones		
Integration of Carbohydrates, lipids and fats metabolism	Integration of Carbohydrates, lipids and fats metabolism	2
Biosynthesis of amino acids and its regulation	Glutamate, glutamine, proline and arginine from α- ketoglutatrate, Serine, glycine and cysteine from 3-phosphoglycerate Oxaloacetate and pyruvate as precursors for nonessential and essential amino acids Tryptophan, Phenylalanine and tyrosine from chorismate, regulation, transamination and deamination of amino acids	6
Biosynthesis & catabolism of nucleotides	Purimidines & pyrimidines-De-novo and salvage pathways.,metabolic disorders	4

METHODOLOGY:

The course should be taught through interactive lectures and demonstrations, which will help the students to relate the subject to everyday activity. Regular quizzing should be encouraged.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) The principles of Biochemistry by Nelson Cox
- 2) Metabolic Pathways by Greenbrg
- 3) Biochemistry by Lubert Stryer 3 rd Edition by W.H. Freeman and Co.
- 4) Biochemistry by G. Zubay, Addision Wesly Publication [1988]
- 5) Biochemistry by Corn and Stump

TITLE OF THE COURSE: ANIMAL TISSUE CULTURE COURSE CODE : BT 403 MARKS: 100

LTP HrC 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the basics of Stem cells and Animal Tissue Culture Techniques and use of in various fields of research and human welfare.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the Animal Tissue Culture techniques, knowledge of aseptic handling of cell lines. Use of these techniques in various fields of research and medicine and human welfare.

PREREQUISITES

Student should have background of cell biology, cell division, basic of aseptic laboratory techniques. They should know basic concept of various laboratory media.

Sr.	Торіс	Description	Hrs
1	Tatus da stance		4
1	Introduction:	 History, Cell culture techniques. 	4
		 Equipment and sterilization methodology. 	
2	Introduction to animal	Nutritional and physiological: Growth factors and growth	6
	cell cultures:	parameters General metabolism	
3	Primary cell cultures	Establishment and maintenance of primary cell cultures of adherent and non-adherent cell lines with examples.	4
4	Secondary cell cultures	Establishment and maintenance of secondary and continuous cell cultures	2
5	Characterization of cell lines	Karyotyping, biochemical and genetic characterization of cell lines.	2
6	Application of cell cultures	Use of Hybridoma for production of monoclonal antibodies.	2
7	Bioreactors in animal cells	Bioreactors for large-scale culture of animal cells	2
8	Transplantation, tissue	Transplantation techniques.	3
	culturing.	Tissue Culturing	
9	Cryopreservation and	Cryopreservation Tissue culture applications	2
	applications	• Tissue culture applications	

COURSE DESCRIPTION

METHODOLOGY

The course would be taught through lectures, demonstrations and LCD PowerPoint presentation

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Cell and Tissue Culture by John Paul.Willams & wilkins Company. 2005.
- Basic Cell Culture Vol. 290 Protocols by Cheryl D Helgason, Cindy L Miller. Humanan Press.2005.
- 3) Basic Cell Culture 2nd Edition by JM Davis Oxford University Press.2002. Tissue Culture in Biological Research by G. Penso and D. Balduki.
- 4) Biotechnology by B. D. Singh: Expanding horizons.Kalyani Publishing. 2008.
- 5) .Principle of Fermentation Technology byStanbury P.F., Wittakar A. & Hall S.J. Pergamon Press. Oxford.1995.

PRACTICAL OF ANIMAL TISSUE CULTURE

(2 Hrs. Per Week)

MARKS 50

LIST OF EXPERIMENTS

- **1.** Laboratory set up for Animal tissue culture.
- 2. Equipments required for Animal tissue culture.
- **3.** Preparation of cell medium.
- 4. Preparation of Calcium Magnesium free Phosphate buffer saline
- **5.** Establishment of primary cell culture from chick embryo.
- 6. PBMC separation by using Ficoll density gradient method.
- 7. Passaging of monolayer cells using trypsinization protocol.
- **8.** Counting of viable cells using hemocytometer.
- **9.** Freezing and revival of cells.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) TITLE OF THE COURSE: PLANT TISSUE CULTURE

COURSE CODE: BT 404 MARKS: 150

LTP HrC 3 02 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Plant Tissue Culture.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of cell culture and new techniques used in Plant tissue culture.

PREREQUISITES

Since the course is very advance in nature, student must know about Sterilization techniques and basic knowledge of Plant tissue culture. Student must have background with Agriculture.

Sr.	Торіс	Description	Hrs
No			
1	History.	Cell theory,	2
		Concept of cell culture, Development of Tissue	
		Culture, Discovery of Auxins and cytokinins, cellular	
		totipotency, history, various terminologies	
2	Organization of plant	Aseptic Laboratory:Media preparation, Sterilization and	4
	tissue culture	Storage room, Different work areas:Media preparation	
	Laboratory	room,Culture room Transplantation area	
		Equipments and instruments required	
3	Aseptic techniques	Washing of glassware, Media sterilization	4
		Aseptic workstation, Precautions to maintain aseptic	
		conditions.	
4	Culture medium	Nutritional requirements of the explants, PGR"s and their in	3
		vitro roles, Media preparation	
5	Callus culture	Introduction, principle, protocols	3
	technique	Genetic variation and applications	
6	Suspension culture	Introduction, principle, protocols, Types, growth and growth	3
	technique	measurement, Synchronization, application and limitations.	
7	Organ culture	Introduction, principle, protocols	3
	technique	Root tips culture, leaf culture, shoot tip and meristem culture,	
		ovary and ovule culture.	
8	Anther and pollen	Introduction, principle, protocols, Haploids and its application	3
	culture technique		
			1

COURSE DESCRIPTION

		Define protonlast	
0			7
9	Protoplast culture	What is protoplast culture	/
		How protoplast fusion is done	
		Stages of protoplast cuylture,	
		Requirement and application	
10	Micro propagation	Concept, requirements, stages, explants, mention of	6
		somaclonal variation	
		Different pathways of micropropagation:	
		Axillary bud proliferation	
		Somatic embryogenesis	
		Organogenesis.	
		Meristem culture	
11	Sacandary matabalitas	Introduction principal optimization of yield	3
11	production and	Commercial espects, applications and limitations	3
	production and	Commercial aspects, applications and minitations.	
	biotransformations.		_
12	Plant tissue culture	Agricultural crops	3
	production of:	Forest tree	
		Ornamental plants	
		Medicinal plants.	
		Endangered plant species.	
13	Applications of Plant	Somatic hybridization	4
	Tissue Culture:	Somaclonal variation	
		Germplasm preservation	
		Genetic transformations	
		Production of artificial seeds.	
		Bioreactor:-Industrial application of tissue culture	
		Total no. of lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks	
I Internal	45 minutes	15	
II Internal	45 minutes	15	
Teachers assessment		10	
End Semester Exam	2 hours 30 minutes	60	
Total		100	

BOOKS RECOMMENDED:

- Plant tissue culture by A. C. Deb.
- Plant tissue culture by Dodds and Roberts.

- Biotechnology by H. D. Kumar.
- Biological science by Taylor.
- Biotechnology by B. D. Singh.

PRACTICALS IN PLANT TISSUE CULTURE (2 hrs. Per Week) MARKS 50

LIST OF PRACTICALS

- 1. Setting up of a plant tissue culture laboratory
- 2. To maintain aseptic conditions in Plant tissue culture laboratory
- 3. Preparation of stock solution and MS Media
- 4. To develop callus culture from excised tap root of carrot
- 5. To culture embryo from Dicot seeds.
- 6. Cell suspension culture of Azadirachta indica

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

TITLE OF THE COURSE: IMMUNOLOGY COURSE CODE: BT 405 MARKS: 150

L T P Hr C 302 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the immune system and it's function and the advances in the immunology.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of immune system, molecular biology of antibody formation, various immunological assay and function of immune system in various microbial infections.

PREREQUISITES

Student should have background of cell biology. They should know basic concept of molecular biology also to understand expression off immunoglobulin gene. They should know some basic assays.

Sr.	Торіс	De	scription	Hrs
INO				
1	Introduction to		Overview of Immune system: History and scope of	6
	immunology		Immunology, Types of immunity: innate, acquired, Comparative immunity. Immune dysfunction and its	
			consequences.	
			b) Cells and Organs of Immune system: Cells of the immune system lymphoid cells: B, T and null cells, Primary lymphoid	
			organs, secondary lymphoid organs-lymph nodes, spleen mucosal associated lymphoid tissues	
2	Generation of B-	٠	Antigens: Immunogenicity vs. antigenicity	4
	cell and T- cell	٠	Epitopes (properties of B-cell and T-cell epitopes)	
	response:			
3	Immunoglobulins		Basic and fine structure of immune-globulin: light chains, heavy	6
	Structure and		chains and sequences	
	Function:		Antigen determinants on Immunoglobulin: Isotopic, allotypic, Idiotypic	
		٠	Immunoglobulin super family	
4	Immunoglobulin	٠	Immunoglobulin mediated effectors functions optimization	6
	Classes and	٠	Activation of complement	
	Biological Activity:	٠	Antibody dependent cell mediated cytotoxicity.	
		۲	Clinical focus: Passive antibody therapy (IgG, IgM, IgA, IgE	
			and IgD), hypersensitivity and immunological disorder	

5	Organization and Expression of Immunoglobulin Genes:	 Genetic model compatible with Ig structure Multigene organization of Ig genes Variable region gene rearrangements Mechanism of variable region DNS rearrangements Generations of antibody diversity Class switching among constant regions genes Expression of Ig genes Regulation of Ig-gene transcription Antibody and genes and antibody engineering Clinical focus 	8
6	Antigen Antibody Interactions:	 Strength of antigen and antibody interactions: Antibody affinity, antibody avidity Cross reactivity Precipitation reactions, agglutination reactions (immunodiffusion and immunoelectrophoretic technique) Radioimmunoassay Enzyme linked Immunosorbant./Assay(ELISA) Western Blotting Immuno precipitation Immunofluorenscence Flow cytometery and Fluorescence 	6
7	MHC-Major Histo- compatibility complexes	MHC molecules and genes	4
8	Immune System in Health and Disease:	 Immune response to infectious disease (viral, bacterial and protozoan) Vaccines (whole organism, purified macromolecules, recombinant vaccine, synthetic polypeptide etc. AIDS, and other acquired or secondary immuno deficiency orders Autoimmunity Transplantation immunology: graft rejections, graft vs host response Cancer and immune system 	8

METHODOLOGY

The course would be taught through lectures, demonstrations and LCD powerpoint presentation.

EVALUATION SCHEME (THEORY)

Examination

Duration

Marks

Total		100
End Semester Exam	2 hours 30 minutes	60
Teachers assessment		10
II Internal	45 minutes	15
I Internal	45 minutes	15
3ATCH (2017-18)		

BOOKS RECOMMENDED:

- Immunology 5thedition by Janis Kuby (W.H Freeman and company)*
 Essentials of Immunology by Ivan M. Roitt 5th Edition Blackwell Scientific Publ.
 Cellular and Molecular Immunology, 3rd edition, by Abbas
 Molecular Biology of the Cell by Bruce Alberts

Teaching hours per week and credits for practicals only: 2 Hr 1 Cr Marks for Practicals: 50

Sr. No	Name of the	Learning objective	Literature/ Weblinks for reference and videos
1.	To determine Blood Group antigens by hemagglutination assay	To understand about the various blood group antigens present in a population; principle of agglutination	Luttmann W, Bratke K, Kupper M, Myrtek, Immunology, The experimental Series - II, USA, Elsevier, Academic Press; 2006
2.	Detection of syphilis using RPR card test	Immunological detection of specific bacterial infections by indirect agglutination	Rose NR, Hamilton RG, Detrick B. Manual of clinical laboratory Immunology. 6 th ed: ASM Press; 2002 Hay FC, Olwyn MR. Practical immunology. 4 th ed: Westwood. Blackwell Publishing Company; 2002. Judith A. Owen JA. Punt J, Sharon A. Kuby Immunology. 7th ed. USA: Susan Winslow; 2013
3.	Detection of typhoid infection by WIDAL test	Immunological detection of specific bacterial infections by direct agglutination	Rose NR, Hamilton RG, Detrick B. Manual of clinical laboratory Immunology. 6 th ed: ASM Press; 2002 Judith A. Owen JA. Punt J, Sharon A. Kuby Immunology. 7th ed: USA, Susan Winslow; 2013
4.	Density gradient separation of PBMCs using	Principle of density gradient separation of immune cells	Male D, Brostoff J, Roth DB, Roitt I, Immunology; 7th ed: Elsevier, 2007

BAICH	(2017-18)		
	Histopaque-1077		Luttmann W, Bratke K, Kupper M, Myrtek, Immunology, The experimental Series - II, USA, Elsevier, Academic Press; 2006
			Cell Separation Media Methodology and Applications 18111569, handbook GE Healthcare
			Isolation of mononuclear cells Methodology and Applications 18-1152-69, handbook GE
			Healthcare
			http://www.gelifesciences.com/handbooks/
5.	To study	To learn about	Talwar GP, Gupta SK, A handbook of
	interaction of antigen and	precipitin phenomena at equimolar	practical and clinical immunology. 2 nd ed. Vol. I & II; 2006
	antibody by Ouchterlony double diffusion	concentrations of antigen and antibody	Rose NR, Hamilton RG, Detrick B. Manual of clinical laboratory Immunology. 6th ed: ASM Press; 2002
	assay		Hay FC, Olwyn MR. Practical immunology.
			4 th ed: Westwood. Blackwell Publishing Company; 2002.
			Judith A. Owen JA. Punt J, Sharon A. Kuby Immunology. 7th ed: USA. Susan Winslow; 2013
6.	Determination of	To learn about	Rose NR, Hamilton RG, Detrick B. Manual
	antibody titre by ELISA	different types of ELISA method and	of clinical laboratory Immunology. 6 th ed: ASM Press; 2002
		their applications	Talwar GP, Gupta SK, A handbook of
			practical and clinical immunology. 2 nd ed. Vol. I & II; 2006
			Judith A. Owen JA. Punt J, Sharon A. Kuby Immunology. 7th ed: USA. Susan Winslow; 2013
7.	Production of	Principle of	Talwar GP, Gupta SK, A handbook of
	polyclonal antibodies in mouse	immunization, collection and analysis of serum for antibody	practical and clinical immunology. 2 nd ed. Vol. I & II; 2006
8.	Purification of IgG from serum	Single step purification of IgG by affinity chromatography	Freifelder D, Physical Biochemistry, 2 nd ed. W.H. Freeman and Company, New York; 1982
			Affinity Chromatography, Vol. 1: Antibodies, 18103746, handbook GE Healthcare http://www.gelifesciences.com/handbooks/

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks) Journal writing: 5 marks

TITLE OF THE COURSE: CONCEPTS IN BIOINFORMATICS COURSE CODE: BI-301 MARKS: 200

LTP HrC 3 0 4 7 5

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in Bioinformatics

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of Internet basics, Biological databases, warehousing of Biological data etc. This knowledge would be applicable in subsequent courses in Bioinformatics in the coming years.

PREREQUISITES

Students should be familiar with school level mathematics and Biology to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

Sr.	Topics	Detailed syllabus	No. of
NO.	Topics		Lectures
1	Overview of	Scope and fields of Bioinformatics	04
	Bioinformatics	Contribution to different problems in biology	
2	Data acquisition,	File formats	06
	Database content,	Annotated sequence databases	
	structure and	Genome and Organism specific database	
	annotation:		
3	Retrieval of Biological	Data retrieval with Entrez and DBGET/ LinkDB, Data	06
	Data	retrieval with SRS etc.	
4	Introduction to nucleic	NCBI, EMBL, DDBJ, EBI	08
	acid and protein	NBRF-PIR, SWISSPROT, PDB etc.	
	databases		
5	Database similarity	BLAST , FASTA	03
	searches	PSI-BLAST algorithms	
6	Pairwise sequence	Clustering algorithm	04
	allignment	PRAS	
		Other MSA	
7	Multiple sequence	Clustering algorithm, PRAS, Other MSA	04

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

`	alignment			
8	Patterns Motifs, and	Derivation and searching,	04	
	Profiles	Derived Databases of patterns, motifs and profiles		
		Prosite, Blocks, Prints, Pfam etc.		
9	Introduction to	Phylogenetics, cladistics and ontology	04	
	phylogenesis	Building phylogenetics trees		
		Evolution of macromolecular sequences		
10	Introduction to	Amino acids, Polypeptide Composition, Secondary	04	
	structural Bioinformatics	Composition		
		Backbone flexibility $4 & \psi$ Angles, Ramchandran Plot		
		Tertiary & Quaternary Structure Hydrophobicity,		
		Disulphide bonds		
		Active Sites		
11	Introduction to	Homology, Analogy, Orthology	02	
		Paralogy, Xenology		
Total Lectures				

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes. Students would be asked to do presentations and assessed on the basis of their presentations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Introduction to Bioinformatics Kothekar V.
- 2) Introduction to Bioinformatics By T. K.Attawood & D.J. Parry-smith
- 3) Bioinformatics By Arthur Lesk.
- 4) Instant notes in Bioinformatics by S. Sundara rajan & R. Balaji

PRACTICAL IN BIOINFORMATICS (4 Hrs. Per Week) MARKS : 100

LIST OF PRACTICALS

- 1. Introduction to Nucleic Acid and Protein Sequence Data Banks
 - NCBI
 - EMBL
 - DDBJ
 - EBI
 - NBRF-PIR,
 - SWISSPROT, PDB etc.
- 2. Database Similarity Searches:
 - BLAST
 - FASTA
 - PSI-BLAST algorithms
- 3. Multiple sequence alignments
 - Clustering algorithm
 - PRAS
 - Other MS
- 4. Patterns, motifs and Profiles in sequences:
 - PROSITE
 - BLOCKS
 - Prints
 - Pfam etc.
 - 5. Data Structure Algorithms

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

SEMESTER V

Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BT 501	Molecular Biology-II	3	0	4	7	5	200
BT 502	rDNA Technology	3	1	0	4	4	100
BT 302	Enzymology & Enzyme Technology	3	0	4	7	5	200
BT 503	Basic Pharmacology and Toxicology	3	1	0	4	4	100
BT 504	Fermentation Technology	3	0	4	7	5	200
BT 506 / BT 507	Elective-I	3	0	4	7	5	200
Total 18 2 16 36 28 1000							
Elective I (BT 506 : Food Biotechnology / BT 507 : Environmental Biotechnology)							

TITLE OF THE COURSE: MOLECULAR BIOLOGY – II COURSE CODE: BT 501 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with Structural details of the cellular anatomy, genetic material of prokaryotes and eukaryotes, transcription and translation of the genetic material, protein localization, regulation of genes in Prokaryotes and Eukaryotes, Gene families, movable genes and cancer.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of DNA, the processes of transcription and translation and Gene regulation.

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of DNA and its structure, basics of protein structure, cell anatomy and its compartmentalization and basics of microbiology.

Sr.	Торіс	Description	Hrs
No.			
1	Introduction to course	Review of structure of DNA and RNA, arrangements of	02
		Genetic material.	
2	Transcription in prokaryotes	.Transcription cycle in bacteria, role of proteins and factors	10
	and eukaryotes	of transcription, Transcription in eukaryotes, role of proteins	
		and factors of transcription, RNA splicing and RNA editing.	
3	Translation in prokaryotes	Steps of translation, Initiation of translation, initiation	08
	and eukaryotes	factors, role of Met-tRNA, elongation and its factors,	
		termination and protein stability	
4	Post translational controls	Protein modifications, protein folding patterns, role of	08
	and protein localization in	enzymes, protein transport of proteins in different	
	different organelles such as	organelles such as Mitochondria and lysosomes.	
	Mitochondria and lysosomes		
5	Gene Regulation	Gene regulation in prokaryotes, operon models, Gene	08
		regulation in eukaryotes, gene activators, enhancers and	
		silencers, gene regulation during development with	
		emphasis on Drosophila and plants.	
6	Multigene families and	Justification of the large nature of the genome, genome	05
	clusters	complexity, tandem repeats, micro and mini satellites.	
7	Oncogenes and Cancer	Tumor cells, tumor suppressor genes, oncogenic viruses and	05
		transforming viruses.	
8	Transposons and retroposons	Mechanism of action of transposons and retroposons,	02

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY

BATCH (2017-18)

replication of transposons and retroposons and applications.

Total number of Lectures

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Instant notes in Molecular Biology by Turner.
- 2 Microbial Genetics by David Freifelder.
- 3 Molecular Biology by David Freifelder.
- 4 Molecular Biology of Gene by Watson, Baker et.al. 5th edition
- 5 Molecular Biology of the cell by Alberts.
- 6 Genes VII and VIII by Lewin and Benjamin.

PRACTICAL IN MOLECULAR BIOLOGY – II

(4 Hrs. Per Week)

MARKS: 100

Sr. Laboratory exercise Hrs No. DNA extraction from Plant materials 4 1 Agarose gel electrophoresis of DNA 4 2 Bacterial DNA extraction & Gel electrophoresis 3 4 4 4 Plasmid DNA extraction & Gel electrophoresis 5 Quantification of DNA by UV spectrophotometer 4 **Demonstration of SDS-PAGE** 4 6 7 Restriction digestion analysis 4 8 Preparation of competent cells & transformation 4 **Replica** Plate Techniques 9 4

LABORATORY DESCRIPTION

METHODOLOGY:

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

48

Dr. D. Y. PATLIL VUTY APPETTIA, PUNE

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) EVALUATION SCHEME PRACTICAL TRAINING

Duration	Marks
1 hour	30
	10
2.5 hours	60
	100
	Duration 1 hour 2.5 hours

BOOKS RECOMMENDED

Molecular Cloning - Sambrook

TITLE OF THE COURSE: RECOMBINANT DNA TECHNOLOGY					
COURSE CODE: BT-502	L	Т	Р	Hr	С
MARKS: 100	3	1	0	4	4

OBJECTIVE

To familiarize the student with emerging field of biotechnology i.e. Recombinant DNA Technology As well as create understanding and expertise in wet lab techniques in genetic engineering.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the subject and have good knowledge of application of Recombinant DNA techniques in Life Sciences Research.

PREREQUISITES

Knowledge of molecular biology is sufficient.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Introduction	Landmarks in Molecular biology and biotechnology,	10
		Advantages of using microorganisms,	
		What is genetic engineering and recombinant DNA	
		technology, Control of gene expression and gene	
		complexity in prokaryotes and eukaryotes.,	
		Genetic engineering in <i>Ecoli</i> and other prokaryotes, yeast,	
		fungi and mammalian cells,	
2	Tools in genetic	Enzymes- DNA polymerases, restriction endonucleases,	6
	engineering	ligases, reverse transcriptases, nucleases, terminal	
		transferases, phosphatases etc.	
		Cloning vectors-plasmids, bacteriophage	
		vectors,cosmids,phagemids,vectors for plant and animal	
		cells, shuttle vectors, YAC vectors, expression vectors etc	
3	Gene cloning	Isolation and purification of DNA (genomic, plasmid) and	10
		RNA,, Isolation of gene of interest- restriction digestion,	
		electrophoresis, blotting,, Cutting and joining of DNA,,	
		Methods of gene transfer in prokaryotic and eukaryotic	
		cells,	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

	2017-10)		
		Recombinant selection and screening methods- genetic, immunochemical, South-western analysis, nucleic acid hybridization, HART, HRT, Expression of cloned DNA molecules and maximization of expression, Cloning strategies- genomic DNA libraries, cDNA libraries, chromosome walking and jumping.	
4	Recombinant	Blotting Techniques, Autoradiography,	10
	DNA techniques	Hybridization, Molecular Probes and Nucleic acid labeling,	
		DNA sequencing, PCR, Mutagenesis, Analysis of gene	
		expression, DNA fingerprinting, RAPD, RFLP, AFLP.	
5	Applications	Applications of Recombinant DNA technology	02
6	Protein	Two-hybrid and other two component systems ,Detection	04
	interaction	using GST fusion protein, co-immunoprecipitation, FRE	
	technology	etc.	
7	Gene therapy	In vivo approach, ex-vivo approach	02
		Antisense therapy, Transgenics.	
8	Genetic	Prenatal diagnosis,	02
	disorders-	Single nucleotide polymorphisms,	
	Diagnosis and	DNA microarrays, Future strategies.	
	screening		
9	The Human	The Human Genome Project details.	02
	Genome Project		
		Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials, PowerPoint presentations, research articles and practical. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1 Biotechnology-Fundamentals and Applications- SS Purohit
- 2 Principles of gene manipulation-Old and Primrose
- 3 Gene Biotechnology-Jogdand

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

- 4 Molecular Biology-Twyman
- 5 Principles of genetics-Klug
- 6 Molecular Biology of the gene-Watson
- 7 Molecular Cloning (Vol 1,2,3)-Sambrook and Russell

TITLE OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGYCOURSE CODE : BT 302L T P Hr CMARKS: 2003 0 4 7 5

OBJECTIVE:

The objective of the course is to familiarize the student with enzymes, their kinetics, purification and applications in different fields

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the enzymalogy. This knowledge would be applicable in different industries

PREREQUISITES:

This is an introductory course in enzymology. School level knowledge of organic chemistry and Biology is sufficient. There are no prerequisites.

Sr.			No. of
No.	Topics	Detail syllabus	Lectures
1	Enzymes	Classification: Trivial & EC system, Properties of enzymes.	08
		Enzyme substrate interactions, enzyme substrate complex,	
		concept of active site, transition state theory, Effect of pH,	
		temperature & substrate concentration on reaction rate.	
		Enzyme Catalysis: Factors affecting catalytic efficiency -	2
		proximity and orientation effects, distortion or strain, acid-base,	
		covalent & metal ion. Chemical modification of enzymes.	
		Isoenzymes and multiple forms of enzymes.	
2	Enzyme Kinetics	Michaelis Menten equation, Significance of Km & Vmax.	10
	& regulation of	Enzyme inhibition- types and their kinetics.	
	Enzyme action	Enzyme activity, international units, specific activity, turnover	
		number. Structure-Function Relations: chymotrypsin, lysozyme,	
		metalloenzyme and the role of metals in catalysis with reference	
		to carboxypeptidases. Ribozymes.	5
3	Allosteric	Types, positive & negative cooperativity, theory of concerted &	4
	interactions &	sequential models, kinetics of Allosteric enzymes.Enzyme	
	Enzyme	Regulation: Feed back, covalent & Zymogen activation,	
	Regulations	Allosteric regulation.	
4	Immobilization of	Various methods of immobilization - ionic bonding, adsorption,	8
	enzymes &	covalent bonding (based on R groups of amino acids),	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

	applications	microencapsulation and gel entrapment, kinetics of immobilized enzyme. Applications of enzymes: Food processing, Medicine, Diagnostics, Production of new compounds, As research tools (ELISA method)	
		Leather industry, textile industry.	
5	Enzyme Technology	Recent advances in enzyme technology, Use of unnatural' substrates, Enzyme engineering, Artificial enzymes, Coenzyme-	8
		regenerating systems.	
		Total Lectures	45

METHODOLOGY:

The course will be covered through lectures supported by tutorials. In tutorials would discuss different applications of enzymes and methods of their extractions and purification. Students would be given assignments in the form of questions. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Fundamentals of Enzymology. Nicolas C. Price and Lewis Stevens. Oxford University press. 2000.
- 2) Enzymes. Trevor Palmer.Horwood Publishing. 2001.
- 3) Lehninger Principles of Biochemistry by David L. Nelson and Michael M. Cox.Vth Ed.Palgrave Macmillan Pblication.2008.
- 4) Biochemistry by Stryer(4th edn) Fundamentals of Biochemistry by A. C. Deb. Biochemistry by Zubay.

PRACTICAL IN ENZYMOLOGY AND ENZYME TECHNOLOGY (4 Hrs. Per Week) MARKS: 100

Teaching hours per week and credits for practical only: Teaching Hours-4; Credit-2

Sr. No	Name of the	Learning objective	Literature/ Weblinks for
1	Handling of enzymes and estimation of specific activity of an enzyme (e.g. amylase, phosphatase, protease)	To understand enzyme substrate reactions, quantification of enzyme activity, concept of unit of enzyme, role of inhibitors, activators etc	Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, Page 149-158. Plummer DT. Introduction to Practical Biochemistry, third edition. Tata McGraw-Hill Edition; 1998.
2	Isolation of β-amylase from sweet potato (<i>Ipomoea batatas</i>)/ barley (<i>Hordeum</i> <i>vulgare</i>) and determination of enzyme activity using specific substrate	To learn procedures for isolation of crude enzyme from the given biological source and determine its activity To learn optimum conditions for isolation and activity analysis of enzymes from their biological source	Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, 149-158 p.
3	Purification of enzyme by ammonium sulphate precipitation	Fractionation of protein using ammonium sulphate Learning the technique of enzyme concentration based upon salting in and salting out principle. Comparative study on the purity of crude and purified enzyme	Jakoby WB. [23] Crystallization as a purification technique. Methods in Enzymology. 1971 Dec 31; 22:248-52.
4.	Effect of physicochemical parameters (pH, temperature) on the activity of enzyme	To understand the role of physicochemical factors for optimum activity of enzyme	Seligman AM, Chauncey HH, Nachlas MM, Manheimer LH, Ravin HA. The colorimetric determination of phosphatases in human serum. Journal Of Biological Chemistry. 1951; 190:7-15.

Sr.	Name of the	Learning objective	Literature/ Weblinks for
No.	experiment		reference and videos
5.	In situ enzyme activity staining on SDS- Polyacrylamide gel. (Amylase, Lactate dehydrogenase)	Principles of negative staining, positive staining.	Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15; 227(5259):680-5. Raymond S, Weintraub L. Acrylamide gel as a supporting medium for zone electrophoresis.
			Science. 1959 Sep 18; 130(3377):711-711
6.	Immobilization of enzyme by gel entrapment and cross linking method	Increasing the industrial significance of enzyme by enhancing its reusability and shelf life	Methods in Biotechnology, Vol 1, Immobilization of Enzymes and Cells Edited by Bickerstaff G. F., Humana Press, Inc, Totowa, N. J. 2006. Meena K, Raja TK. Immobilization of yeast invertase by gel entrapment. Indian Journal of Biotechnology. 2004; 3: 606-608.
7.	Study on enzyme inhibition.	Understand the role of catalytic amino acid residues in enzyme reaction mechanism	 Strelow J, Dewe W, Iversen PW, Brooks HB, Radding JA, McGee J, Weidner J. Mechanism of Action assays for Enzymes. 2012. Eisenthal R, Danson MJ, editors. Enzyme assays: a practical approach. Practical Approach (Paperback); 2002.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF THE COURSE: BASIC PHARMACOLOGY AND TOXICOLOGYCOURSE CODE:BT-504L T P Hr CMARKS: 10031 0 4 4

OBJECTIVE:

The objective of the course is to familiarize the students with aspects of Pharmacology and toxicity of different chemical compounds.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of quantitative and qualitative role and mechanisms of toxic chemical compounds.

PREREQUISITES:

Since the course is very basic in scientific world, student must know about graphical relation between doses is to response relationship with biological cell.

Seq.	Торіс	Description	Hrs
1.	Pharmacology Introduction	Organized drug discovery and development. Pharmacological, microbial, recombinant, biochemical and molecular level	02
2.	Clinical Developments	Screening systems and their construction strategies Alternative strategies in lead identification, lead optimization, pre-clinical development: Clinical trials, patenting and clearance for application	04
3.	Mechanism of action	Receptor versus enzyme mediated drug action, SAR and its quantitative description Molecular principles in agonist and antagonist action. Peptide and protein mimicry Morphines verses enkephalins	06
4.	Chemical Kinetics	Principles and practice of transition state mimicry Illustrative examples, collected substrate analogue inhibitors ,and design strategies	06
5.	Aspects of Pharmacology	Combinatorial approach to compound libraries, current status and future Prospects, synthetic peptide libraries, peptide libraries through phage display.	05
6.	Toxicology Introduction	Definition and derivation of toxicology Sister sciences, endocrinology and pharmacology Definition of toxins and toxicants Key features of toxicology and study of toxicants Modes of exposure, elimination, bioavailability, partition	5
7.	Dose Response	Toxicant targets	5

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

		Physiologic dose-response The role of intercellular chemical communication: hormone, receptor, transducer, effectors Agonist, antagonist Interconnections of transduction mechanisms	
8.	Metabolism	Biochemistry of toxicant metabolism	3
		Enter hepatic circulation	
		Toxic dynamics and toxic kinetics	
9.	Dosage	Stress and dose interactions	5
		Diet as modulator or mode of exposure	
		Developmental status/age and toxicity	
		Predispositions to toxic risk	
		Moderators of toxic risk	
		Carcinogenesis	
10.	Models	Adequacy of models for developmental toxicity;	4
		Steroid disruptors: oestrogen, androgen, progestin, corticoid;	
		Thyroid, retinoid and other disruptors.	
		Total	45

METHODOLOGY

The course would be taught through lectures, demonstrations.

Evaluation Methodology theory

Minor Test 1	1 Hour	15
Minor test 2	1 Hour	15
Seminars		10
End Semester Examination	3 hours	60
Total		100

- 1. Comprehensive medicinal chemistry-VolI & VolVI by C. Hansch.
- 2. Design of enzyme inhibitors as drug by M.sandle & H. J. Smith
- 3. Computer aided drug design by T.J.Pexin & C.L. Propst Dekk14e.
- 4. Klaassen. McGraw-Hill:New York, NY. 2001. 1236 pp.
- 5. Casarett & Doull's Toxicology: The Basic Science of Poisons, 6th Ed.

COURSE NAME: FERMENTATION TECHNOLOGYL T P Hr CCOURSE CODE: BT 5033 0 4 7 5MARKS: 2003 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the experimental tools used in Industrial microbiology and fermentation technology. The students would learn industrial techniques as: Isolation, improvement, maintenance and preservation of microbial cultures, Design of media, bioreactors and downstream processes along with production studies during the tenure of their study.

LEARNING OUTCOME

At the end of this course student would be able to understand basic principles of fermentation technology as used in Biotechnology.

PREREQUISITES

Since the course is very basic in nature, school level knowledge in physics, chemistry & Biology is enough to take the course and there are no prerequisites.

Sr.	Торіс	Description	Hrs
No.			
1	Introduction to	-Historical background	2
	fermentation	-Important industrial biotechnologically derived products	
	technology		
2	Fermentation Design	-Design of fermenter and its components (construction, impellers,	8
		valves, spargers, other attachments of the system)	
		-Layout of Fermenter unit and laboratory	
		-Operation details of fermentation and trouble shooting	
		-Bioreactor types for products of microbial, plant and animal origin	
		-Role of computers in fermentation processes	
3	Sterilization	-Sterilization of Fermenter (batch and continuous processes)	4
		-feed sterilization	
		-sterilization of liquid wastes	
		-Filter sterilization	
4	Isolation of microbes	-Isolation and preservation of industrially important microbes	4
	and Strain	-Strain improvement by recombinant DNA techniques, isolation of	
	improvement	mutants, etc	
5	Design of media and	-Nutritional media for microorganisms, their formulation,	7
	inoculum	sterilization, screening and economy for proper growth of industrial	
	development	microbes	
		- identification of variables important for fermentation	
		-Medium optimization using conventional and statistical designs	
		- Inoculum development for bacterial, fungal and yeast strains	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

		-Aseptic inoculation in fermenter	
6	Microbial Growth	Kinetics of growth	6
	Kinetics	-in batch culture	
		-in continuous culture	
		-fed-batch culture	
7	Downstream	-Cell separation techniques	9
	processing	-Concentration of metabolites	
		-Purification of metabolites	
		-Crystallization and drying	
8	Biosynthesis of	-Industrial production of Antibiotics, enzymes, organic acids	8
	metabolites with	,vitamins, amino acids, solvents, beverages and single cell protein	
	examples		
		Total number of lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations, tutorials and practical training.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

TEXT BOOKS

- 1. Principles of fermentation technology by P F STANBURY, S. Hall, A. Whitaker., Pergamon Press, USA.
- 2. W Cruger and A Cruger A Textbook of Industrial Microbiology 2nd Edition Sinauer Associates Sunderland US 2004
- 3. A.H. Patel. Industrial Microbiology. MacMillan. 2000.
- 4. Casida, L E JR 1984 Industrial Microbiology. Wiley Eastern (revised editions)

PRACTICAL IN FERMENTATION TECHNOLOGY (4 Hrs. Per Week) MARKS: 100

Teaching hours per week and credits for practicals only: 4 hours/week, 2 credits

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and
1.	Isolation of industrially important microorganisms by screening methods, enzyme producer, antibiotic producer etc	To understand the concept of Primary and secondary screening.	3,4
2.	Preservation of industrially important organisms by different methods such as glyceol stock, dry soil culture and lyophilization.	To understand the importance of preservation of culture.	3
3.	Study of bacterial and yeast growth kinetics. Determination of specific growth rate and generation time.	To know the principle of bacterial growth curve and different phases.	1
4.	Production of alpha amylase by solid state fermentation, determination of enzyme activity/g of substrate and DSP methods for recovery of enzyme.	To understand the concept of solid state fermentation (SSF)	1 and 4
5.	Production of streptomycin/penicillin antibiotic by fed batch fermentation and determination of antibiotic activity.	To learn upstream and downstream processing in antibiotic fermentation. To learn antibiotic assays.	2 and 4
6.	Production of bioethanol from sugarcane juice and molasses by fermentation using <i>Saccharomyces</i> <i>cerevisiae</i> .	To understand industrial process of alcohol fermentation.	2
7.	Downstream processing for recovery of ethanol by simple distillation and detection by Chemical method and GC	To know simple and advanced method for alcohol recovery.	2, 1
8.	Production citric acid using Aspergillus niger by surface and submerged process and estimation of citric acid/ml of broth.	To know the basics of submerged fermentation process, To understand cell separation technique by centrifugation	2 and 4
9.	The recovery of citric acid by precipitation method and determination of yield of production.	To know product concentration by precipitation method. Purification by TLC /paper chromatography method.	2,1
10	Industrial visit to fermentation industry.	To learn different units in industry such as production. Quality control, Quality assurance, R & D, and Lab. To study unit operations in industry.	

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

* References:

- Manual of Industrial Microbiology and Biotechnology (2nd Edition by Arnold L. Demain and Julian E. Davies, Ronald M. Atlas, Gerald Cohen, Charles L. Hershberger, Wei-Shou Hu, David H. Sherman, Richard C. Willson and J. H. David Wu)
- Industrial Microbiology-An introduction (By Michael J. Waites, Neil L. Morgan, John S. Rockey and Gary Higton)
- Principles of Fermentation Technology (2nd edition, by Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Butterworth-Heinemann, An imprint of Elsevier Science
- 4. Fermentation and Enzyme Technology By D.I.C. Wang, C.L. Cooney, A.L. Demain, P. Dunnill, A.E. Humphrey & M.D. Lilly John Wiley and sons, New York

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF THE COURSE: ELECTIVE 1 FOOD BIOTECHNOLOGYCOURSE CODE: BT-506L T PMARKS: 2003 0 4

LTP HrC 304 75

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Food Biotechnology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of biotechnological methods to improve the value of different food and new techniques used in Food Biotechnology.

PREREQUISITES

Since the course is very advance in science, student must know about the new biotechnological and molecular genetics method which to apply in food. Student must have background with Biotechnological aspects and molecular genetics.

Seq. No	Торіс	Description	Hrs
1	Introduction to	Biotechnology application to food stuffs	02
	Food	Career in Food Biotechnology	
	Biotechnology	Activities of Food Biotechnologist	
2	Biotechnology in	Unit Operation in Food Processing	14
	Food Processing	Quality Factors in Preprocessed Food	
		Food deterioration and its control	
		Rheology of Food products	
3	Molecular	Methods And application of molecular cloning in foods	06
	methods and	Developmental technique for new plant verities	
	Production		
4	Application of	Microbial role in food products	16
	Biotechnology to	Yeast, Bacterial and other microorganisms based	
	Food products	process and products	
5	Modification and	Bioconversion of whey, molasses and starch and other	06
	Bioconversion of	food waste for value addition	
	food raw materials		
6	Regulatory and	Modern Biotechnological regulatory aspects in food	04
	Social aspects of	industries	
	Food	Biotechnology and Food : A Social Appraisal	
	Biotechnology		
		Total number of Lectures	48

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1 Food Biotechnology: Dietrich Knorr, Inc. New York and Basel
- 2 Food Science: Potter N.N. CBS publication
- 3 Handbook of Food Biotechnology : NIIR Board of Consultants and Engg., NIIR
- 4 Food Science and Technology: B.S.Khattar, Daya Publishing House, Delhi
- 5 Biotechnology: B.D.Singh, Kalyani Publishers
- 6 Food Microbiology: Frazier

PRACTICALS IN FOOD BIOTECHNOLOGY (ELECTIVE I) (4 Hrs. Per Week)

MARKS: 100

OBJECTIVE:

Objective of course is to familiarize the students with basic aspects of food microbiology, estimation of minerals from food products, chemical preservatives.

LEARNING OUTCOME:

At the end of the course, the students will be able to study & correlate the quality of food and food products on the basis of chemical & microbial analysis.

PREREQUISITES:

This is a basis course regarding study of food products parameters.

COURSE DESCRIPTION

Sr.	Topics	No. of
No.	Topics	Lectures
1	Determination of quality of milk by MBRT test	04
2	Detection of number of bacteria by SPC method	04
3	Microscopic determination of microbial flora from yoghurt and lactic acid determination	04
4	Microbial examination of food	04
5	Detection of pathogenic bacteria from food samples	04
7	Preparation of Cheese	04
8	To determine mineral salt concentrations in fruit juices by using flame photometer	04
9	To check the food efficacy testing of chemical preservatives	04
10	Preparation of Bread	04

METHODOLOGY

The course will be covered through practical work supported by field study. Students would be made to gain scientific data information using various food products resources. They would be taught how to improve quality and useful microbial flora to food products.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

- 1) Practical in Food Microbiology
- 2) Practical in Microbiology : Kannan

TITLE OF THE COURSE: ELECTIVE 1 ENVIRONMENTAL BIOTECHNOLOGYCOURSE CODE: BT-507LTPHrCMARKS: 20030475

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Environmental Biotechnology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of biotechnological methods to improve environment value and new techniques used in Environmental Biotechnology.

PREREQUISITES

Since the course is very basic in science, student must know about the new biotechnological methods which to apply in environment. Student must have background with Biotechnological aspects and molecular genetics.

Sr.	Торіс	Description	Hrs
No.			
1	Environment	Introduction and History	03
		Global warming	
		Depletion of ozone layer	
2	Environmental Pollution	Types of Pollution	04
		Water pollution, Soil Pollution, Air Pollution, Noise	
		Pollution	
		Sources of pollution	
		Collection of samples from different sources	
3	Air pollution and its	Active trace gases in air	03
	control	Aerosols in air	
		Control of air pollution through biotechnology	
4	Microbiology of waste	Aerobic System	06
	water treatment	Biological processes for domestic and industrial waste	
		water treatments; Aerobic systems - activated sludge	
		process, trickling filters, biological filters, rotating	
		biological contractors (RBC), Fluidized bed reactor (FBR),	
		expanded bed reactor, Inverse fluidized bed biofilm	
		reactor (IFBBR) packed bed reactors air- sparged reactors.	
		Anaerobic System Anaerobic biological treatment -	
		contact digesters, packed column reactors, UASB.	
5	Microbiology of	Xenobiotics in environment	04
	degradation of	Decay behavior of xenobiotics	
	xenobiotics		

6	Bioremediation	Bioremediation I Introduction, constraints and priorities of Bioremediation, Biostimulation of Naturally occurring microbial activities, Bioaugmentation, in situ, ex situ intrinsic & engineered bioremediation, Bioremediation- II, Solid phase bioremediation - land farming, prepared beds, Phytoremediation, Composting, Bioventing & Biosparging, Liquid phase bioremediation - suspended bioreactors, fixed biofilm, reactors. Role of genetic engineering	06		
7	Mining and Metal biotechnology – with special reference to Copper & Iron.	Sources Microbial transformation, accumulation and concentration of metals, metal leaching, extraction, biosorption and future prospects.	04		
8	Bio Fuels	Microorganisms and energy requirements of mankind, Production of nonconventional fuels - Methane (Biogas), Hydrogen, Alcohols and algal hydrocarbons, Use of microorganisms in augmentation of petroleum recovery.	06		
9	Hazardous Waste Management	Biotechnology application to hazardous waste management - examples of biotechnological applications to hazardous waste management - cyanide detoxification - detoxification of oxalate, urea etc toxic organics - phenols.	6		
10	Advances in Environmental Biotechnology	GIS in Environmental Management Computer based Environmental modeling Design of ETPs	06		
Total number of Lectures 48					

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1 Textbook of Biotechnology-H.K.Das
- 2 Textbook of Biotechnology-Purohit
- 3 Stanier R. Y., Ingram J.L., Wheelis M.L., Painter R.R., General Microbiology, McMillan Publications, 1989.
- 4 Foster C.F., John Ware D.A., Environmental Biotechnology, Ellis Horwood Ltd., 1987.

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY

- BATCH (2017-18)
 - 5 Karrely D., Chakrabarty K., Omen G.S., Biotechnology and Biodegradation, Advances in Applied Biotechnology Series, Vol.4, Gulf Publications Co. London, 1989.
 - 6 Bioremediation engineering; design and application 1995 John. T. cookson, Jr. Mc Graw Hill, Inc.

PRACTICALS IN ENVIRONMENTAL BIOTECHNOLOGY (4 Hrs. Per Week)

MARKS: 100

1) Methods of sampling for pollution measurement

- a) Statistical design for collection of samples from site
- b) Air sampling (Impaction)
- c) Soil sampling (soil probes/auger)
- d) Water sampling (Niskin type or equivalent depth sampling)
- 2) Methods of Pollution Measurement (as per Indian and global recommendations)
 - a) Air pollution by measurement of SOX (sulphur oxides-di), NOX (nitrous oxide-di) and suspended particulate matter.
 - b) Water pollution by measurement of water conductivity, pH, dissolved oxygen, and turbidity.
 - c) Soil pollution by measurement of metals and organic compounds.
 - d) At least one representative biological indicator for each of air (lichens), water (Macroinvertebrate) and soil (Moss) pollution.
 - e) Graphical representation of the data collected after analysis of samples and comparison of values with Indian and Global standards.
- 3) **Community analysis of polluted and non-polluted sites by PCR based methods** (eukaryotic and prokaryotic domain primers). Comparison of polluted versus non-polluted sites to ascertain the possible alteration in community structure introduced due to pollutant.
- 4) **Microbial biodegradation (aerobic and anaerobic) of any one pollutant** (e.g. hydrocarbon) or any xenobiotic and study of its decay behaviour.
- 5) Bioremediation Monitoring uptake of heavy metals using biological methods- organisms.
- 6) Demonstration for biogas production/ visit to wastewater plant/ biogas plant. Note: Wherever it is not possible to perform the experiment due to limitation of equipment or other reasons, a demonstration will be arranged, however no more than 10% practical's will be demonstrations.

Semester VI

Course	Course Name	L	Т	Р	Hr	Cr
Code						
BT601	Virology	3	1	0	4	4
HU601	Principles of Management and Entrepreneurial	3	0	0	3	3
	Developments					
HU 602	Biosafety, Bioethics & IPR	3	1	0	4	4
BT 602	Genomics, Transcriptomics & Proteomics	3	1	2	6	5
BT 603	Biochemical Engineering	3	0	4	7	5
BI 504 / BI	Elective II	3	0	2	5	4
606/ BI 603						
Total		18	3	8	29	25

Elective II: BI 504: Operating Systems BI 603: Perl & Bioperl BI 606: Computer Networking

TITLE OF THE COURSE: VIROLOGY COURSE CODE: BT 601 MARKS: 100

L T P Hr C 3 1 0 4 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with Viruses, their structure, Plant and Animal viruses and Molecular Virology.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of types of viruses and the various diseases caused by viruses.

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of Microbiology, DNA, and RNA.

Sr.	Торіс	Description	Hrs		
No.					
1	The Viruses	Discovery, virus structure, classification, viral replication cycle, detection and enumeration of viruses, virus cultivation in lab, viriods, prions.	10		
2	Bacteriophages	Morphology, life cycle of viruses, reproduction of ds DNA phages, ss DNA phages and RNA phages, Lysogeny.	10		
3	Plant Viruses	Nomenclature and classification, viruses of fungi, algae and protozoa, viruses infecting fruits and vegetables.	09		
4	Animal Viruses	Viruses containing ss(+) RNA, ss(-) RNA, ds RNA and DNA and ssDNA, RNA tumor viruses requiring DNA intermediate for synthesis, Miscellaneous viruses.	13		
5	Molecular Virology	Retroviruses and influenza viruses, interferons.	06		
Total number of Lectures 48					

COURSE DESCRIPTION:

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Microbiology by Pelczar.
- 2 Microbiology by Atlas.
- 3 Field"s Virology.
- 4 Virology by Biswas and Biswas.
- 5 Microbiology by Prescott.

TITLE OF THE COURSE: PRINCIPLES OF MANAGEMENT AND ENTREPRENEURIALDEVELOPMENTSL T PCOURSE CODE: HU 601L T PMARKS: 1003 0 0 3 3

OBJECTIVE OF THE COURSE:

The objective of the course is to prepare students competent in the field of quality control management of drugs and biopharmaceutical. The aim of the course is to create a general motivation amongst students to critically analyze the problem and how to apply the knowledge of quality management in their future endeavor. To prepare them to think independently for making newer project through literature survey, writing a review article on a topic aned 15 min. presentation to the class.

LEARNING OUTCOME

At the end of the semester it is expected that student understood the basics of quality control management practice in the industry and research labs., It is expected that they will be more confident to develop and implement the same policies in their research projects either for pursuing their higher education or for industrial application

PREREQUISITE

This is an advance level course. Students must have an understanding of introduction chemistry, Biology, Biochemistry, Microbiology, Pharmacology and toxicology of drugs, plant and animal biology,

Sr.	Торіс	Description	Hrs
INO			
1	Management	Role of managers and leaders in biotechnology companies	20
	Principles:	Innovative problem solving strategies	
		Diverse and global work force	
		Developing partnerships with other businesses	
		Customers and competitors	
		Utilization of technology	
		Current challenges in organization	
		Leadership skills, communication, conflict resolution, goal	
		integration	
2	Creating	Market assessment of innovative technology	25
	Biotechnology	Patents and licensing	
	Enterprise:	Corporate law	

Raising money from venture capitalists	
Government grants	
Strategic alliances	
Sales and marketing	
Real estate	
Human resources	
Regulatory affairs	
Preparation of business plan for biotech start-up	
Total lecture	45

METHODOLOGY

The course would be covered through lectures, supported by quizzes and case history discussion. A visit to pharma industry after the study will help their understanding om the sinkect. The students will be evaluated based pm twp c;ass test, lecture attendance, class participation, Write-up and power point presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1 Principles of management byEllen A Benowitz
- 2 Greatest management principles in world by Michael Leboeuf
- 3 Management-principles and practices by Garry Dessler

TITLE OF THE COURSE: INTRODUCTION TO MOLECULAR MODELING AND CHEMOINFORMATICSLT P Hr CCOURSE CODE : BI-605LT P Hr CMARKS: 1003148

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with molecular modeling concepts and molecular modeling softwares.

LEARNING OUTCOME

At the end of the course, the students will have sufficient knowledge of how the molecules could be built and what are the various details associated with the field.

PREREQUISITES

Since course deals with molecular modeling students should have basics of Maths, Physics and Chemistry of molecules.

Sr.	Торіс	Description	Hrs
No.			
1	Introduction to molecular graphics	What are different coordinate systems?Basic principle of molecular graphics and structure visualization.Different molecular graphics packages.Protein Data Bank.	
2.	Building of small molecules	Building of small molecules Methods used in building small molecules using crystal, cartesian, polar and chemical internal coordinates. Building of Biopolymers DNA & oligopeptides in different secondary structure	14
3.	Optimization of geometries of small molecules	Energy minimization by systematic search method Plotting conformation energy contours (Ramachandran plot), and finding out minimum energy conformation Gradient based Energy minimization Molecular mechanics approach Molecular Dynamics method Monte Carlo method Genetic algorithm	12
4.	Use of Quantum chemical methods for geometry optimization	Schrödinger equation Basic Formalism in quantum mechanics Schrödinger equation for a multi- electron atom Schrödinger equation for a molecule Hartree- Fock Method Different MO methods Molecular electrostatic potential Optimization of geometries of small molecules Quantum chemical indices	14

Total hours

METHODOLOGY

The course would be taught through lectures, practicals and assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

Molecular modeling by Andrew Leach Molecular Modeling, Holtje and Folkers G Weinheim New York

Subject name: Introduction to molecular modelling and chemoinformatics Teaching hours per week and credits for practicals only: 4 Hrs and 4 credits Marks for Practicals: 100

Sr.	Name of the	Learning	Literature/ Weblinks for reference and videos
No.	experiment	objective	
1.	Exploring of Small	To extract	1.PubChem Home Page. Available from:
	Molecule database	molecules from	https://www.pubchem.ncbi.nlm.nih.gov
		database	2.Irwin JJ, Shoichet BK, ZINC-a free database
			of commercially available compounds for
			virtual screening. J Chem Info & Model.
			2005;45(1):177-82. Available from:
2	To overlars the protein	To outroot	1 Dormon HM Woothrook I Eong 7 Cilliland
Ζ.	dote bank and the file	information	C. Phot TN. Wojesig H. et al. The Protein
	format	related to proteins	Data Bank Nucleic Acids Pas. 2000:28:235
	Iomat	from the file	Available from: http://www.rcsh.org
3	Visualization	To learn different	1 The PyMOL Molecular Graphics System
5	Analysis of Molecules	aspects of	Version 1.8 Schrödinger LLC Available
	Analysis of Wolecules	visualizing a	from: https://www.pymol.org
		molecule	nom. <u>mps.//www.pymoi.org</u>
4	Molecular drawing of	Chemoinformatics	1.CS Chem3D Pro and CS MOPAC Pro 5.0
	small molecules by	tool and software	CambridgeSoft Corporation, Cambridge, MA:
	fragment based method	handling.Drawing	1999.
	and 2D based.	of molecules with	2.Hanwell MD, Curtis DE, Lonie DC, Vanderm
		softwares and file	-eersch T, Zurek E, Hutchison GR, Avogadro:
		formats	an advanced semantic chemical editor,
		generation	visualization,and analysis platform. J
5	To calculate the bond	For understanding	Cheminf., 2012;4(17). Available
	distance and bond	the importance of	from: http://avogadro.cc/wiki/Main_Page
	angles for given	bond length and	3.DeepView – The Swiss-PdbViewer
	molecules	bond angle for	User Guide ver 3.7; 2001. Available from:
		stability of	http://www.expasy.org/spdbv/
		molecules in	
		nature	
6	To perform the energy	Energy	
	minimization of given	minimization	
	compounds	process and	
		methods as well	
		as importance for	
7	To nonform malacele	Inodeling	
/	10 perform molecular	dynamics	
	dynamica of given	bohoviour of	
	uynamics of given		
	molecules	molecules in	
	m	sorvent system	
8	To calculate the	Understanding	1. DeepView – The Swiss-PdbViewer
	molecular electrostatic	the distribution	User Guide ver 3.7; 2001. Available from:
	potential of molecules	cnarges on	nttp://www.expasy.org/spdbv/
	and proteins	molecular surface	2. The PyMOL Molecular Graphics System,

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

		of molecules and	Version 1.8 Schrödinger, LLC. Available from:
		its importance	https://www.pymol.org
			3. Hyperchem (<u>Froimowitz M</u> , BioTechniques,
			1993, 14, 6: pp. 1010-1013 HyperChem: a
			software package for computational chemistry
			and molecular model)
9	Conversion of	To about different	Baoilleach, Open babel ver 2.4.1, 2016.
	Molecular file formats	file formats and	Available from:
		their conversions	http://openbabel.org/wiki/Main_Page

Internal evaluation will be based on following criteria

For practicals of 2 credits and 100 marks, internal evaluation will be for 40 marks with following break-up: Practical: 10 marks Attendance: 10 marks (above 80% attendance gets full marks) Laboratory assignment: 10 marks Journal writing: 10 marks

TITLE OF THE COURSE: BIOSAFETY, BIOETHICS AND INTELLECTUAL PROPERTY RIGHTSCOURSE CODE: HU 602L T PMARKS: 1003 1 0 4 4

OBJECTIVE:

The objective of the course is to make students learn about the legal, safety and public policy issues raised due to the rapid progress in Biotechnology and development of new products. The biotechnology students suppose to understand and follow the regulatory framework important for the product safety and benefit for the society. The students are given case history to discuss and express their views.

LEARNING OUTCOME

At the end of the course, it is expected that students have understood the basic issues of Biosafety, Bioethics and IPR.IT is expected that they will be more confidant to practice and implement all these policies in their future endeavor.

PREREQUISITES

This is an advance level course. Students must have an understanding of introductory undergraduate level course such as chemistry, biology, microbiology, plant and animal biology and molecular biology.

Sr.	Topic	Description	Hrs
No			
1	Biosafety	Introduction and Development of Biosafety Practices Principles General lab requirements Definitions and Biosafety levels: 1,2,3,4 Summery Biological safety cabinets: centrifuges, Shipment of biological specimens, Biological waste management, Decontamination, Biosafety manuals, Medical surveillance, Emergency response	18
2	Bioethics	History and IntroductionEthics and genetic engineeringGenetic PrivacyPatent of genesHuman racesTrading Human LifeHuman CloningStem CellsEugenicsBiotechnology and Christian faithHuman genome and religious considerationsCase StudiesFinal Considerations	16
3	Intellectual Property Rights	Introduction Types of Intellectual Property Rights Plant and Animal growers rights Patents	14

COURSE DESCRIPTION

	Patenting of biological materials	
	International conventions and cooperation	
	Current Issues	
	Patents for higher animal and higher plants	
	Patenting of transgenic organisms and isolated genes	
	Patenting of genes and DNA sequences	
	Indian scenario.	
Total number of Lectures		48

METHODOLOGY

The course will be covered through lectures. The students will be given problems and case histories to discuss and clear their problems. The students will be evaluated based on two class tests, lecture and lab attendance, class participation, write up and quizzes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Understanding Biotechnology by Borem
- 2 Biotechnology an Introduction: Barnum S.R.
- 3 Biosafety and Bioethics : Joshi
- 4 Introduction to Bioethics : Bryant
- 5 Legal Aspects of Business : Pathak
- 6 Intellectual Property Rights : Raju
- 7 Patent Law : Narayan
- 8 Intellectual Property Management: Jungham

TITLE OF THE COURSE: GENOMICS COURSE CODE: BT-604 MARKS: 150

L T P Hr C 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in protein study and drug discovery.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of Genome organization and new techniques used in genomics that are PCR,DNA Chips, Sequencing.

PREREQUISITES

Since the course is very advance in nature, student must know about DNA different Forms of DNA, there structure and Basic separation and visualization techniques for nucleic acids.

Sr.	Торіс	Description	Hrs	
No.				
1	Introduction to Genomics.	History, What is genome, structural and	5	
		organization of genome/		
2	DNA sequence determination	DNA Sequencing and its accuracy	4	
3	Polymerase Chain Reaction	History ,use, application.	4	
4	Genome Centers and their organization.	Gene order and its aplication	2	
5	High-throughput DNA sequencing	Automated DNA sequencing	3	
	technology, robotics and			
	automation.identification			
6	Potentials and limitations of existing	Computing BAsics	2	
	software and hardware tools and their			
	relationship with sequencing methods.			
7	Genome analysis and annotation.	ESTs and Finding Function from sequence.	4	
8	Phylogenetic analysis	Clustering methodology, strategy, and its	7	
		application		
9	Internet resources.	Bioinformatics Useful sites:- ENSEMBL,	4	
		TIGR,		
10	Genomic mapping and single nucleotide	SNPs and its application	3	
	polymorphism (SNP).			
11	Micro array gene expression analysis.	Microarray Technique and analysis	4	
12	Introduction to biological data	Homology modelling	3	
	modeling.			
13	Vocabulary and Foundations		3	
	Total number of Lectures			

COURSE DESCRIPTION

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

REFERENCES BOOKS:

Bioinformatics: A practical guide to analysis of genes and protein By Baseman''s A., D & Ouellette B.F.F Wiley

Bioinformatics Methods and Protocols (Methods in Molecular Biology, Vol. 132) by Stephen Misener (Editor), Stephen A. Krawetz (Editor

Gene cloning IV by T.A. Brown, Genomes II T.A. Brown, cell biology

PRACTICALS IN GENOMICS (4 Hrs.) MARKS : 100

OBJECTIVE:

The objective of the course is to familiarize students with the basic principles and the advancement in the field of genome analysis and gene expression. The practical's intents to give students knowledge and hands on experience of genome expression analysis techniques.

LEARNING OUTCOME:

The students will have hands on knowledge of techniques of genome analysis, high throughput gene expression analysis by protein profiling, and its applications at the end of the course.

PREREQUISITE:

Students should have basic knowledge of molecular biology and Recombinant DNA techniques, cell biology and bioinformatics.

Sr.	Name of practical	Hrs
No.		
1	Nested PCR	4
2.	Multiplex PCR	4
3.	Nucleotide sequencing	4
4.	mRNA isolation	4
5.	Reverse transcriptase (RT) PCR	4
6.	Real time PCR	4
7.	Probe labeling by nick translation	4
8.	<i>in-vitro</i> transcription	4
9.	Isolation and characterization of Expressed Sequence Tag (ESTs)	4
10.	Proteome analysis by 2D gel electrophoresis	4
11.	BLAST analysis	4
12.	Bioinformatics analysis of promoter, splice site, and termination site	4

LIST OF EXPERIMENTS:

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

REFERENCE BOOKS :

Molecular Cloning by Sambrook and Russel, practical manual,Cold Spring Harbor Lab. CSHL) Publication,2004 Vol I,II and III

TITLE OF THE COURSE: C# .NET (ELECTIVE-II) COURSE CODE: BI-606 MARKS : 150

L T PHrC 30 254

OBJECTIVE:

The objective of the course is to create understanding amongst the students in the subject of C# .Net through the practical and theory

LEARNING OUTCOME:

At the end of the semester, it is expected that students understood how to make Database & webpage designing, windows form design using C# .Net. It is expected that they will be more confident to use the aspects of C# .Net in pursuing their higher education or for Software Industries.

COURSE DESCRIPTION:

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Introduction/Overview	Introduction to .Net	4
	of .Net	Platform for the future	
		Drawbacks of Current Trend	
		Net Framework – BCL & CLR l Key design goals	
		CLR, CTS, MSIL & other tools.	
		Multiple Language Interaction & support 1 Moving from	
		Project to Assemblies	
		Security in .NET – CAS	
		Advantages/Disadvantages	
		Features of .Net	
		Assemblies in Detail	
		GAC, Strong Names	
2	Visual C#.Net	Advantages/Disadvantages	5
	Language	Why C#/ Why Not C#	
		Where does C# Fit in	
		C, C++ to Visual C#	
		Features of C	
		.NET Namespaces	
		.NET Versions – 1.1/2.0/3.0/3.5 Beta	
		Visual Studio.NET 2003/2005/Orcas/2008	
		Windows Vista – New Look	
		Gadgets/SideBars/UAC - relation with .NET	
		Hardware/Software Requirements	
3	Programming Using	The start of the application	5
	Visual C#.Net	C#.Net Program Design	
		Variables and types	
		Value types and reference types (CTS)	
		Strings and arrays	
		The Console class	
		String formatting	

DAICH	1 (2017-10)		
		Statements and flows	
		Programming Structures	
		Command-line arguments	
		VS.NET to Create C#.NET Apps	
		C# 3.0/3.5 features – Implicit types, Extention Methods and	
		more	
4	Introduction To	Windows Forms – I	5
	Windows Form	Windows forms library – WinForms	
		Layout Enhancements	
		Forms and controls – Hierarchy	
		Creating simple GUI by hand	
		Event handling	
		Basic controls	
		Windows forms – buttons, check boxes, radio buttons,	
		nanels, group boxes, list boxes, nicture boxes	
		Windows Forms – II	
		Menus	
		Built-in dialog boxes and printing	
		Extender Controls	
		ToolString StatusString and progress hars	
		A now MDL forms strategy	
		A new MDD Tornis strategy	
		New Controls Web Provisor Property Crid etc.	
5	Object Oriented	Change & chinete	4
3	Object Oriented	Classes & objects	4
	Concepts (Basic)	Abstract & overfide methods	
		Creating and using your own classes I Data members and	
		member methods I Instantiate an object	
		This keyword	
		Properties – Read Only Write Only	
		Build process using windows class library I Generate classes	
		for other clients	
		How to use classes as part of project	
6	Object Oriented	Accessibility levels, specifiers	6
	Concepts (Advanced)	Constructors	
		Method overloading	
		Class (static) variables & methods	
		Object destruction	
		"ref" and "out" parameters	
		Constant values	
		Enumerations	
		Inheritance and Polymorphism	
		The root of all classes	
		Creating derived classes	
		Method overriding and hiding	
		Polymorphism and virtual functions	
		Casting objects	
		Abstract classes	
		Sealed classes	
		Static classes	
7	Error Handling	Unstructured error handling support	4
ĺ		Structured error handling	
	I		I

DAIC	1 (2017-10)		
		Error categories	
		Debugging the application	
		Debug and Trace classes	
		Code Optimization	
		Testing and strategies	
8	Ado.Net	Ado.Net Components	7
		Data Sources And .Net Data Providers	
		Accessing Data In The Connected Environment	
		Accessing Data In Disconnected Environment	
		Sorting, Searching And Filtering	
9	ASP.Net	Introduction to web technologies	8
		Web Forms Architecture	
		ASP.Net and HTTP	
		Web application developing using Visual Studio	
		State Management and Web Applications	
		ASP.Net Server-side controls	
		Caching in ASP.Net	
		ASP.Net application configuration	
		Debugging, Diagnostics of application	
		Connectivity with Database using ADO.Net/Entity	
		Framework	
		Data Access Controls	
		Personalization and Security	
Tota	1 Lectures	· · · · ·	48

BOOKS RECOMMENDED:

C Sharp.Net Complete Reference, McGrawHill

C# 2010 Programming: Author: Kogent Learning Solutions Inc. Publisher: Dreamtech • Press Beginning ASP.NET 4.5 in C# and VB (Author :Imar Spaanjaars)

- Fless Beginning ASP.NET 4.5 III C# and VB (Author Innar Spaanjaars)
- \mathbb{C} # and the .Net Platform (second edition) by Andrew Troelsen, Aprèss
- publication. Beginning ASP.NET 3.5 in C# 2008 by Matthew MacDonald, Apress publication.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

PRACTICAL'S IN C#.NET(2 Hrs. Per Week) MARKS : 50

LIST OF PRACTICAL'S

- 1. Windows Form designing.
- 2. Windows Forms Layout
- 3. Windows forms buttons, check boxes, radio buttons
- 4. Windows forms panels
- 5. Windows forms group boxes, list boxes.
- 6. Windows forms -picture
- 7. MySQL Database connectivity
- 8. Sql Server Database connectivity
- 9. Oracle Database connectivity
- 10. MS excel Database connectivity
- 11. MS access Database connectivity
- 12. Error Handling(based on the syllabus)
- 13. Oop"s basic & advanced
 - i. Creating classes,
 - ii. Objects, passing values,
- iii. Creating method,
- iv. Method overloading,
- v. Method overriding,
- vi. Inheritance,
- vii. Abstract classes,
- viii. Static classes,
- ix. Constructors,
- x. Virtual functions.
- 14. Webpage designing. (based on the syllabus)
- 15. Database designing(based on the syllabus)

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

Elective II TITLE OF THE COURSE: COMPUTER NETWORKING COURSE CODE:BI-606 MARKS: 200

L T P Hr C 3 0 4 7 5

OBJECTIVE

- 1 To create general understanding regarding basic knowledge of networking in computers, which are the protocols used for transmission of data, devices used in networking.
- 2 To familiarize the student with the models used in networking like OSI model.
- 3 To increase the knowledge of student about cryptography, digital signatures, e-mails, etc.

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of the basic knowledge of networking in computers, which are the protocols used for transmission of data, devices used in networking, bit transmission, cryptography, etc.

PREREQUISITES

Students should know the basics in networking like LAN, MAN, WAN concepts, HTML.

Sr.	Topics	Detail Syllabus	No. of
No.			Lectures
1	Introduction:	Uses of computer Networks	06
		Network Hardware	
		Network Software	
		Reference Models	
		Network Examples	
		Network standardization	
2	The Physical	The theoretical basis for data communication	06
	Layer	Guided transmission media	
		Wireless transmission	
		Communication satellites	
		The public switched telephone network	
		The mobile telephone system	
		Cable television.	
3	The data Link	Data link layer design issues	06
	Layer:	Error detection & correction	
		Elementary data link protocols	
		Sliding window protocols	
		Protocol verification	
		Examples of data link protocols	
4	The medium	The channel allocation problem	06
	access control	Multiple access protocol	
	sub-layer	Ethernet	
		Wireless LANs	
		Broadband wireless	
		Bluetooth	

COURSE DESCRIPTION

	-		Data link layer switching	
	5	The network	Network layer design issues	06
		layer	Routing algorithms	
			Congestion control algorithms	
			Quality of service	
			Internetworking	
			The network layer in the Internet	
6	Th	e transport	The transport service	06
	lay	er	Elements of transport protocol	
			The internet transport protocols: UDP	
			The internet transport Protocol: TCP	
			Performance issues	
7	Th	e application	DNS- the domain name system	06
	lay	er	Electronic mail	
			The World Wide Web	
			Multimedia	
8	Ne	twork Security	Cryptography	06
			Symmetric key algorithms	
			Public key algorithms	
			Digital signatures	
			Management of public keys	
			Communication security	
			Authentication protocols	
			E-mail security	
			Web security	
			Social issues	
			Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes. The topics which are difficult & important will be given in the question bank, which is to be solving before the semester ending.

Evaluation Scheme (Theory)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

Teaching hours per week and credits for practical only: 2 hours, 1 credit

Sr.	Name of the	Loorning objective	Literature/ Weblinks for
No.	experiment	Learning objective	reference and videos

-	11		
1	Study of network	Learning purpose, features, and	Computer Networks by
	Connections,	functions of a network components.	Tanenbaum, Andrew S,
	Cables, NICs,		Prentice Hall of India, New
	RJ45		Delhi
2	Study of Switch,	Learning purpose, features, and	Computer Networks by
	Hub, Router,	functions of a network components.	Tanenbaum, Andrew S,
	Repeater, Bridge		Prentice Hall of India, New
	and Gateway		Delhi
3	Establishing a	To establish a local Area Network	Computer Networks by
	local area network	consisting of minimum three	Tanenbaum, Andrew S,
		personal computers running the	Prentice Hall of India, New
		Linux and windows operating	Delhi
		system, in order to share	
		information and resources.	
4	Network IP	Learning the classification of IP	Computer Networks by
	Address	address, assigning IP addresses to	Tanenbaum, Andrew S,
		computers present in a network.	Prentice Hall of India, New
		Identify subnet address.	Delhi, Data Communications
			and Networking by Foronzan,
			Tata McGraw Hill, New Delhi
5	Network	Use command prompt instead of	1 <u>http://whirlpool.net.au/wiki/</u>
	commands	GUI	windows nw diag cmds
			2 <u>https://www.tecmint.com/li</u>
			nux-network-configuration-
			and-troubleshooting-
			<u>commands/</u>
6	Install and use	Learn how to remotely control one	Data Communications and
	internet based	computer from another computer	Networking by Foronzan, Tata
	remote access		McGraw Hill, New Delhi
	software		

RECOMMENDED BOOKS

1. Computer Networks by Tanenbaum, Andrew S, Prentice Hall of India, New Delhi 2. Data Communications and Networking by Foronzan, Tata McGraw

Elective II TITLE OF THE COURSE: OPERATING SYSTEM **COURSE CODE: BI 504 MARKS: 200**

LTP HrC 3 0 2 5 4

OBJECTIVE

- 1 To create general understanding regarding basic knowledge of Operating system, concept of process, responsibilities of Operating System, management of disk, job scheduling etc.
- 2 To familiarize the student with Deadlock, Semaphores.

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of the Deadlock:

prevention, Memory organization and management, Virtual memory concepts, paging and segmentation, address mapping, Overview of the Linux OS.

PREREQUISITES

Students should know the basics in Computer, what is operating system

COURSE DESCRIPTION

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Overview	Operating systems, Functionalities and characteristics of OS. Hardware concepts related to OS, CPU states, I/O channels, memory hierarchy, microprogramming, Structure of Disk, Disk Storage Allocation Schemes for File Allocation Table The concept of Process, operations on processes, process states, concurrent processes, process control block, process context	3
2	File Systems Responsibilities of OS	File operations, attributes, extensions, types Access Methods Directory Organization Single Level Two Level Tree Structured Acyclic Graph Directory General Graph Directory Protection Consistency Semantics File System Implementation Management of Free Space Disk Scheduling Algorithms	3
3	History Using Windows OS	OS Features, capabilities, limitations UNIX process control and management, PCB, signals, forks and pipes	2
4	operating system organization	Interrupt processing, operating system organization, OS kernel FLIH and Dispatcher Job and processor scheduling, scheduling algorithms, process hierarchies Problems of concurrent processes, critical sections, mutual exclusion synchronization, deadlock Mutual exclusion, process co-operation, producer and consumer processes	4
5	Semaphores	definition, init, wait, signal operations Use of semaphores to implement mutex, process synchronization implementation of semaphores	3
6		Critical regions, Conditional Critical Regions, Monitors, Ada Tasks. Interprocess Communication (IPC), Message Passing, Direct and Indirect. 16.Deadlock: prevention, detection, avoidance, banker's algorithm	4
7	Memory management	Memory organization and management, storage allocation Virtual memory concepts, paging and segmentation, address mapping Virtual storage management, page replacement strategies	4
8	File organization	blocking and buffering, file descriptor, directory structure File and Directory structures, blocks and fragments, directory tree, inodes, file descriptors, UNIX file structure	4

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY

ватсн (2017-18)

BAICH	(2017-18)		
9	Overview of the	History	4
	Linux OS	Architecture Features and capabilities	
		Kernel, shell & applications	
		File System / Directory Structure	
		Multitasking and Multi-user system	
		Operating modes (RC scripts, Init levels)	
10	Important	Login	5
	concepts in a	Login scripts & profiles	
	Linux	X window system, the GUI under Linux	
	environment	Different window manager	
		Linux Installation	
		Linux Shell Programming Vi Text Editor, Shell Variables	
		Examples Piping and redirection	
		copy, rename, delete and move	
		directory listing, file handling and IO redirection	
11	Users and Groups	Concept of users and groups	3
	1	Owner creator	
		Primary and secondary group	
		types of file and directory permission	
12		Miscellaneous other commands cat, cal, date, passwd, less,	4
		grep. wc. bc uname. etc	
	Basic commands	KDE	
	and using GUI	Editors (Kwrite Kedit)	
		Office Applications (word processors spreadsheets)	
		Internet related applications (browsers mail clients)	
		Multimedia applications	
12	Command Lina	Additional taxt manipulation commands a g aut gran split	4
15	Loninanu Line	Additional text manipulation commands. e.g. cut, grep, spin,	4
	Interface	Working with bash	
		Working with bash	
		Login scripts and promes	
		Shell scripting	
		Introduction to regular expressions	
		Process management	
14	Trouble Shooting	Tips and Tricks	1
		Getting help	
		In silico viruses	1
		Total Lecture	48

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes. The topics which are difficult & important will be given in the question bank, which is to be solve before the semester ending.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

Total

BOOKS RECOMMENDED:

- Introduction to Parallel Computing Second Edition by Grama et al. Addison-Wesley, Inc., 1 2003, ISBN 0-201-64865-2.
- Modern Operating Systems (second edition), Andrew S. Tanenbaum, Prentice Hall Publishers, 2 2001, ISBN 0-13-031358-0.
- William Stallings, Operasting Systems, Prentice Hall. 3
- 4 Harvey M. Deitel, An introduction to operating systems. Addison-Wesley.
- 5 Andrew Tanenbaum & Albert Woodhull, Operating Systems: Design and Implementation.Prentice-Hall.
- Douglas Comer, Operating System Design The XINU Approach. Prentice-Hall. 6
- A.M. Lister, Fundamentals of Operating Systems, Macmillan (1979 7

Teaching hours per week and credits for practical only: 2 Hrs and 1 Credit Marks for Practical: 50

Sr.	Name of the	Learning objective	Literature/ Weblinks for reference and videos
No.	experiment		
1.	Installation of	To learn the booting	Gordon W. Getting started with linux:
	Linux	process, creating	installing linux on your computer. Gizmodo
		partition, making	Media Group; March 2011. Available from:
		dual boot system	http://lifehacker.com/5774997/getting-
			started-with-linux-how-to-install-linux-on-
			<u>your-computer</u>
2.	Studying	Learn how Linux	Operating systems lab manual. Rajlakshmi
	directory	manages files and	Engineering College; 2012. Available from:
	structure	directories	http://www.rajalakshmi.org/Dept/IT/CS2257
			-LM.pdf
3.	Creating a	Understanding the	Hargrave V. How to create a Linux virtual
	Virtual Machine	concept of	machine with VirtualBox; March 2013.
		virtualization and	Available from: <u>http://vichargrave.com/how-</u>
		effectively using the	to-create-a-linux-virtual-machine-with-
		hardware	<u>virtualbox/</u>
4.	Learning Linux	Work confidently	Linux commands; Media college. [cited
	commands	with Linux	December 2016] Available from:
		environment	http://www.mediacollege.com/linux/comman
			d/linux-command.html
5.	Gcc compiler	Compiling C and	How to create a first C program on Linux.

			<u>http://www.linfo.org/create_c1.html</u> <u>https://www.youtube.com/watch?v=y2fagvb</u> <u>da9I</u>
6.	Implementation of Scheduling algorithm	Learnhow waiting time and turnaround time is calculated for the given burst time of processes	Operating systems laboratory programs, LINUX shell and C programs. Source code solutions; 2015. Available from: <u>http://www.sourcecodesolutions.in/2010/09/c</u> <u>s1254-operating-system-lab.html</u>
7.	Shell Scripting	Writing scripts to automate various task	Basak U. Linux shell scripting (writing and executing a shell script). YouTube video; June 2013. <u>https://www.youtube.com/watch?v=xbx9wZ</u> <u>hroM8</u>

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks) Journal writing: 5 marks

Elective II	
COURSE CODE: BI 603 MARKS: 150	LTP HrC 30254
COURSE CONTENT: 1. Introduction and Installation: Introduction to perl Use of Perl in Bioinformatics History, Availability, Support and Basic Concepts	4
2. Scalar Data: Number, ,String, Scalar Operators, Scalar Variables Scalar Operators, Functions	4
3. Arrays and List Data: Introduction, Literal Representation, Variables Array Operators and Functions, Scalar and List context	4
4. Control Structure : Data types: Arithmetic and logical operators Conditions and loops	4
5. Hashes: Hash variables, Literal Representation of hashes, Hash function	4
6. Basic I/O:	4

7. Regular Expressions: 4 Use of regular expression, , Patterns, Matching operators 4 Substitution, Split and Join functions 4	
 8. Subroutine: 4 System and user function, The local Operator Variable length Parameter list 	
 9. Advanced features in Perl: 4 Advanced features in Perl, Advanced functions, operators files and directories System Interaction, Using Perl's command line tool. References and Structures, Using Modules 	
10. Using Perl for CGI 6	
11. Using Bioperl Modules 6	
EVALUATION SCHEME (THEORY)	

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1) Solutions & Examples for Perl Programmers by Nathan Torkington and Tom Chistiansen. Network Programming with Perl(1st edition) by Lincoln Stein.
- 2) Beginning Perl for Bioinformatics by James Tisdall, O-Reilly
- Developing Bioinformatics Computer Skills by Cynthia Gibas, Per Jamberk, O-Reilly Developing Bioinformatics Computer Skills by Cynthia Gibas, Per Jamberk, O-Reily Learning Perl by Randal
- 4) Programming Perl by Larry Wall
- 5) Programming the Perl DBI by Alligator Descartes
- 6) Advanced Perl Programming

Teaching hours per week and credits for practical's only: 02 Hr 1 Cr Marks for Practical's: 50

Sr. No.	Name of the Experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Installation of Perl and BioPerl.	Learning installation	
		process.	1. Tisdall James,
2.	Scripting to understand the scalar data	Declaration of	Beginning Perl for
	representation.	variables and use of operators.	<i>Bioinformatics</i> , 1 st edition, O'Reilly
3.	To write scripts using control structures.	Application of control	Media, 2001.

		structures.	
4.	Write scripts using arrays and lists with	Use of arrays and lists.	
	biological example.		
5.	Write scripts using hashes with biological	To know about data	
	example.	structure hash.	
6.	Write scripts for Basic I/O with biological	Handling user input	
	example	and output.	
7.	Writing regular expressions for motifs and	Learning to write	
	pattern findings.	regular expression.	
8.	Write scripts using subroutines with	Organizing script using	
	biological example.	subroutines.	
9.	Scripting to create and delete directories and	Learning directory	
	providing various rights.	operation	
10.	Script writing for file handling.	Learning file operation.	
11.	Write scripts using CGI with biological	Learning CGI.	
	example.		
12.	Write scripts using BioPerl modules with	Using Perl modules for	
	biological example.	biological application.	

- 2. Tisdall James, *Mastering Perl for Bioinformatics*, 1st Edition, O'Reilly Media, 2003.
- 3. Schwartz Randal, Phoenix Tom and Foy Brian d, *Learning Perl*, 6th edition, O'Reilly Media, 2011.

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks) Journal writing: 5 marks

SEMESTER VII

Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BT 701	Biomembrane and Molecular Cell Signaling	3	1	0	4	4	100
BT 705	Development of Biology and Stem Cells	3	1	0	4	4	100
HU 701	Quality Control Management in Biotechnology	3	1	0	4	4	100
BT 706	Transcriptomics	3	0	4	7	5	200
BT 603	Biochemical Engineering	3	1	4	8	3	200
BT 707 / BT 708 / BT 709 / BT 710	Elective-III	3	0	4	7	5	200
	Total	18	3	8	27	25	900

<u>Elective III:</u> BT 707 : Metabolic Engineering BT 708 : Marine Biotechnology BT 709 : Agricultural Biotechnology

TITLE OF THE COURSE: BIOMEMBRANES AND MOLECULAR CELL SIGNALINGCOURSE CODE: BT 701L T P Hr CMARKS: 10031 0 4 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the interactions between cells, the pathways and mechanisms of cellular communications.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the cellular receptors, their types and their role in cell-cell interactions.

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of enzymes, receptors, cellular transport and its machinery.

Sr.	Торіс	Description	Hrs
No.			
1	Overview of cell-cell and intracellular signaling mechanisms	Endocrine transmissions, Paracrine transmissions, Autocrine transmissions, Synaptic transmissions	01
2	Cell-cell recognition	Molecules involved in recognition, their functions and the mechanisms of recognition.	02
3	Cell-adhesion molecules	CAMs, their properties and types.	02
4	Concepts of receptors (extracellular, intracellular):	Receptor ligand interactions (concepts of agonist and antagonist) Receptor characterizations Receptor functions Extra cellular receptors Coupling of Receptors to different signal transducing machinery	07
5	G-proteins	Structure and their function	02
6	Ion channels and catalytic proteins	Justification of the large nature of the genome, genome complexity, tandem repeats, micro and mini satellites.	04
7	Adenylate cyclase system	cAMP-PK and CREB proteins	04

COURSE DESCRIPTION:

8	Calcium channels	Types of calcium channels, their structure,	02
0	Oscillations of calcium	Consequence of low and high coloium	02
9	concentration as signals	concentrations in the cell and its effects	03
10	Persentary with protein	Structure and function	02
10	turnesing lyingge activity		02
11	tyrosine kinase activity		00
11	Intercellular receptors	Steroid receptors, structure and function	02
12	Second messengers	Phosphoinositides, inositol1,4,5, tris phosphate,	06
		diacyl glycerol, camp, cGMP, arachidonic acid, prostaglandins and NO	
13	Mechanism(s) of signal	Coupling of activation receptors to intracellular	06
	transduction	signal transducing machinery; protein kinase(s)	
		cascade	
14	Receptor modifications,	Different structural and functional modifications	02
	adaptation of cells.	in the receptors. Cellular adaptations.	
15	Developmental	Abnormalities during growth and development.	01
	abnormalities due to		
	defective signaling		
	pathways		
16	Signal transducing	Different molecules in cell signaling, action of	02
	machinery as targets for	drugs on them.	
	potential drugs		
	Total nu	mber of Lectures	48

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Genes VII by Lewin and Benjamin
- 2 Molecular cell biology by Lodish, Baltimore
- 3 Molecular Biology of the cell by Bruce Alberts

TITLE OF THE COURSE: DEVELOPMENTAL BIOLOGY AND STEM CELLSCOURSE CODE:BT 705LTP Hr CMARKS: 10031044

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in stem cell biology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of stem cells and new techniques used in stem cell biology.

PREREQUISITES

Since the course is very advance in nature, student must know about cell-cell interaction and cell signaling. Student must have background with cell biology.

Sr.	Торіс	Description	Hrs
No.			
	Developmental Biology		
1	Introduction to	Origins and History, Early Beliefs Gametogenesis,	4
	Developmental Biology	Fertilization, Mechanisms of Preventing Polyspermy,	
		Fertilized-Egg, Activation	
2	Cleavage	Mechanisms of Cleavage, Cleavage Patterns,	4
		Holoblastic, Cleavage: Isolecithal and Mesolecithal;	
		Meroblastic Cleavage: Telolecithal and Centrolecithal;	
		Cleavage Patterns in Major Groups of Organisms;	
		Cell Specification	
3	Gastrulation	Cell Movements, Germ Layers, Gastrulation in Major	4
		Groups of Organisms	
4	Later Embryonic	The Central Nervous System (CNS) and Epidermis,	4
	Development	Mesoderm, Endoderm differentiation, Cell Death,	
		Front Limb vs. Hind Limb Formation	
5	Genetic basis of	Differential Gene Expression and various	3
	Development	developmental stages, Genetic Knockouts	
	Stem cells		
6	Stem cell basics	Stem cell terminology	4
		Stem Cells from Early Mammalian Embryos	
		Introduction to ES cells, EC cells, EG cells and TS	
		cells.	
		Their origin and characteristics.	
7	Embryonic Stem cells	Isolation of ES cells	3

COURSE DESCRIPTION

Salient features of ES cells

		Application of ES cells.	
8	Germline Stem Cells	Types of GSC"s.	4
		GSC"s in mammals, Drosophila and C. elegans.	
		Establishment of GSC"s	
		Stem cell niche.	
9	Stem Cells and Cloning	Therapeutic and reproductive cloning	3
		Nuclear Transfer method	
		Application of NT ES cells.	
		Safety of NT ES cells.	
10	Bone Marrow	History	4
	Mesenchymal	Embryonic origin of MSC"s	
	Stem Cells	Harvesting, Isolation and Characterization.	
		Differentiation studies of MSC"s	
11	Hematopoietic Stem	Identification of HSC"s	4
	Cells	Characterisation of HSC"s	
		Mouse HSC"s assay- In vitro and In vivo	
12	Neurons, Stem Cells,	Neural stem cell	3
	and Potential	Neural crest stem cell	
	Therapies	Alternative source for neural precursor	
13	Stem cell applications	Role in cancer and other diseases	4
		Ethical and Regulatory aspects of stem cell technology	
		Role of Stem Cells in Cell signaling	
	r	Fotal number of Lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Developmental Biology, Eighth Edition, Scott F. Gilbert, Susan Singer, Publisher: Sinauer Associates Inc.; ISBN-13: 978-0878932504
- 2. Developmental Biology: A Very Short Introduction, Lewis Wolpert, Publisher: Oxford University, ISBN-13: 978-0199601196
- 3. Essential Developmental Biology, Jonathan M. W. Slack Publisher: Wiley-Blackwell; 3 edition, ISBN-13: 978-0470923511
- 4. Stem cell handbook, by STEWART SELL, MD

5. Stem cell Biology by Robert Lanza.

TITLE OF THE COURSE: QUALITY CONTROL MANAGEMENT IN BIOTECHNOLOGYCOURSE CODE: HU 701LTP Hr CMARKS: 1003104

OBJECTIVE OF THE COURSE:

The objective of the course is to prepare students competent in the field of quality control management of drugs and biopharmaceutical. The aim of the course is to create a general motivation amongst students to critically analyze the problem and how to apply the knowledge of quality management in their future endeavor. To prepare them to think independently for making newer project through literature survey, writing a review article on a topic and 15 min. presentation to the class.

LEARNING OUTCOME

At the end of the semester it is expected that student understood the basics of quality control management practice in the industry and research labs., It is expected that they will be more confident to develop and implement the same policies in their research projects either for pursuing their higher education or for industrial application

PREREQUISITE

This is an advance level course. Students must have an understanding of introduction chemistry, Biology, Biochemistry, Microbiology, Pharmacology and toxicology of drugs, plant and animal biology,

Sr. No.	Торіс	Description	Hrs
1	Introduction	General introduction about drugs manufacturing process and policies	2
2	ТQМ	Details of the total quality management.	2
3	Industrial standard	ISO 9000 series, ISO 140000 series	3
4	Pharmacopeias	Indian Pharmacopeias, British Pharmacopeias US Pharmacopeias, Extra Pharmacopeias	1
5	Good manufacturing processes	Introduction GMP and CGMP, GXP and GCP	3
6	Key requirement of C GMP	C GMP for API manufacturing Quality management, Personel Building and facilities, Documentation Material management, Production and Inprocess control Packaging Storage and distribution Laboratory control Validation, Change control Rejection and reuse of material, Complaints and recall Contract manufacturers, Agents, Brokers, Traders, Distributors, Repacker and retailer	15
7	Good Laboratory Practices	History, Present Status Indian scenario	4
8	ICH	ICH guidelines History and Introduction, Necessity of ICH International scenario and Indian scenario	4

COURSE DESCRIPTIONS:

B/((C)) (2017-10)				
	9	SOP	Standard operating procedures	2
	10	MVP	Master Validation Plan in labs and industry	2
	11	Accredition &	National Accreditition Board for Testing &	2
		Registration with	Calbbration(NABL)	
		various Regulatory	Registration with FDa of other countries for expoting	
		Authorities	formulations, API & NCE"s.	
			Total number of Lectures	45

METHODOLOGY

The course would be covered through lectures, supported by quizzes and case history discussion. A visit to pharma industry after the study will help their understanding om the sinkect. The students will be evaluated based pm twp c;ass test, lecture attendance, class participation, Write-up and power point presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Quality control assurance Anjaneyulu
- 2 Pharmaceutical management by Itkar
- 3 Pharmaceutical master validation plan by Haider
- 4 Handhook of microbiological Quality Control by Baird.

TITLE OF THE COURSE: TRANSCRIPTOMICS COURSE CODE: BT-706 MARKS: 100

L T P Hr C 3 04 7 5

OBJECTIVE:

Objective of the course is to familiarize the students with basic principles and the advancement in the field of genome and gene expression analysis. The course also introduces the students to various techniques of gene expression profiling in prokaryotes and eukaryotes.

LEARNING OUTCOME:

The students will have knowledge of high throughput methods of genome analysis and gene expression profiling at the end of the course.

PREREQUISITE:

Students should have basic knowledge of molecular biology of transcription in prokaryotes and eukaryotes, recombinant DNA technology, cell biology and bioinformatics.

Sr.	Topics	Detail	Hrs
No.			
1.	Introduction	Concepts of transcriptomics and its scope.	2
		Transcription and post-transcriptional modifications.	3
		Differential gene expression.	
		RNA splicing/xport	3
		RNA stability	
		Translational control (miRNA)	
2.	Tools and Techniques	Global expression profiling and expression analysis by	6
	for transcriptome	DNA microarray, cDNA microarray, Gene chip synthesis	
	analysis	spotted array and <i>in -situ</i> hybridizarion of oligonucleotides	
		Gene chips for transcriptional profiling in human, mouse,	4
		plant, yeast, bacteria etc.	2
		Human brain transcriptome.	2
		Yeast meiotic transcriptome	
		Expressed sequence tags (ESTs) and sampling of ESTs	4
		from cDNA libraries. ESTs database.	
		Serial Analysis of gene expression (SAGE).	2
		Massively parallel signature sequencing (MPSS)	2
2	Applications in	Consisting for discass profiling	7
э.	Applications in	Identification of novel tumor supressor genes, insulin	/
	buman diagona	registence, and asthma	
	numan uiseases	Expression profiling for close prodiction and close	
		Expression profiling for class prediction and class	

COURSE DESCRIPTION:

		discovery in similar types of cancer.	
4.	Introduction to	Gene expression omnibus (GEO).	6
	Bioinfomatic tools and	Center for information Biology Gene Expression Database	
	internet resources	(CIBEX).	
		EPCLUST programme.Microarray and gene expression	
		(MAGE).	
		MGED (Microarray gene expression database)	3
		Bioinformatic analysis of promoter prediction, splice site	
		termination site.	
		Total	46

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

REFERENCES BOOKS :

1. Transcriptomics: Expression pattern analysis by Virendra Gomase and Somnath Tagore, VDM Verlag.2009

2. Genome Transcriptome and Proteome Analysis by Alain Bernot, John Wiley and Sons Ltd.2004

3. Principles of gene manipulation and Genomics S.B.Primrose and R.M Twymann, Blackwell publishing VII edition, 2006

4.Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbour Laboratory Press (CSHLP),II edition,2004

PRACTICALS IN TRANSCRIPTOMICS (4 Hrs.) MARKS : 100

OBJECTIVE:

The objective of the course is to familiarize students with the basic principles and the advancement in the field of genome analysis and gene expression. The practicals intents to give students knowledge and hands on experience of genome expression analysis techniques.

LEARNING OUTCOME:

The students will have hands on knowledge of techniques of genome analysis, high throughput gene expression analysis by protein profiling, and its applications at the end of the course.

PREREQUISITE:

Students should have basic knowledge of molecular biology and Recombinant DNA techniques, cell biology and bioinformatics.

Sr. No.	Name of practical	hrs
1.	Nucleotide sequencing	4
2.	Nested PCR	4
3.	Multiplex PCR	4
4.	mRNA isolation	4
5.	Reverse transcriptase (RT) PCR	4
6	Nucleic acid labeling by nick translation	4
7.	<i>in -vitro</i> transcription	4
8.	Size fractionation of RNA using denaturing agarose gel electrophoresis.	4
9.	Differential gene expression by real time PCR	4*
10.	PCR-based Method for Detection and Quantification of Small RNAs (SnRNA)	4
11.	Isolation and characterization of Expressed Sequence Tag (ESTs)	4*
12.	Proteome analysis by 2D gel electrophoresis	4*
13	Nucleotide and amino acid sequence analysis by using bioinformatic tools.	4*

*The time allotted in the syllabus is as per slot given for each practical. It can be adjusted according to the respective practical requirement.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF THE COURSE: BIOCHEMICAL ENGINEERINGCOURSE CODEBT - 603MARKS: 200

L T P Hr C 3 1 4 8 6

OBJECTIVE:

The objective of the course is to create general understanding amongst the students in the subject of Biochemical Engineering through in-depth lectures. The objective of the course is create an understanding of concepts and basic principles in the subject with emphasis on how to apply the knowledge in industrial processes involving Biochemical Engineering.

LEARNING OUTCOME:

At the end of the semester, it is expected that students understood the basic principles of engineering knowledge to solve a critical industrial biotechnology problem. It is expected that they will be more confident to use the knowledge in pursuing the knowledge in production of useful metabolites.

PRE-REQUISITES:

This is an introductory level course. Students are expected to have an understanding of introductory knowledge in Physics, Chemistry and Biology.

Sr. No.	Topics	Detail syllabus	No. of lectures
1	Introduction to Biochemical Engineering	-Fundamentals of biochemical engineering -Biotechnology and Bioprocess engineering	2
2	Stoichiometry & Energetic	-Principles of thermodynamics -Stoichiometry for metabolic pathways: Carbon metabolism, biosynthesis of molecules, Stoichiometry of cell growth and product synthesis, theoretical predictions of yield coefficients with examples	6
3	Bioprocess Kinetics	Reactors for measurement of Kinetics, Structured Kinetic Models, Balanced and transient growth kinetics, Kinetics of product formation, Death kinetics during fermentation process	6
4	Biological reactors	Ideal & non-ideal bioreactors, reactor operations: Batch, Fed- batch & Continuous. Growth, Substrate utilization and Product formation: Mass & Heat Balances, Structured and unstructured models Bioreactor design & configurations, microbial reactors- aerobic and anaerobic reactors, Immobilized enzyme & cell reactor systems, Animal cell culture systems	8
5	Transfer reactions	Mass transfer concepts in Gas-liquid systems, mass transfer across free surface, KLa and oxygen transfer rate, rheology and its relation to mass transfer, non-Newtonian fluids, factors affecting Kla, heat transfer correlations	8
6	Bioreactors: Operation and control	Sensors for measurement of different parameters, on-line sensing and measurement systems, computational methods,	7

COURSE DESCRIPTION

		data analysis during process, Process control: regulatory and	
		cascade, continuous and advanced systems	
7	Scale up, process	Consideration of parameters for scale up, process economics:	6
	economics and	one example from laboratory to market and economic	
	applications	considerations, mathematical modeling of one system like	
		anaerobic digester and simulation studies	
8	Case Studies	Case studies (Product or technology based)	5
		- Microbial system	
		- Animal system	
		- Recent developments	
	Total		48

METHODOLOGY:

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1 P. F. Stanbury, A. Whitaker and S. J. Hall. 'Principles of Fermentation Technology', Pergamon Press, Oxford and revised editions.1995.
- 2 J. E. Bailey, D. F. Ollis Biochemical Engineering Fundamentals, 2nd edition, McGraw-Hill, New. York) and revised editions. 1986
- 3 Pauline Doran, Bioprocess Engineering Principles, Academic Press (1995) and revised editions.

4 Shuler, ML and F. Kargi. Bioprocess. Engineering: Basic Concepts (Second Ed.). Prentice Hall, Englewood Cliffs, NJ. 2002.

PRACTICALS IN BIOCHEMICAL ENGINEERING (4 Hrs. Per Week)

MARKS : 100

LIST OF PRACTICALS

- 1. Study of bioreactor design in laboratory.
- 2. Microbial Growth kinetics: Determination of specific growth rate (μ), Saturation constant (KS) and growth yield (Yx/S), Sp. product formation rate (Q1) and substrate consumption rate for the given microorganism in batch culture.
- 3. Study of Growth curve by optical density method. Determination of cell dry mass, and its corelation with N for *E.coli/S.cerevisiae*.
- 4. Determination of KLa by sulphite oxidation method.
- 5. Control of bioreactor and operation of biosensors for the control of pH, temperature, aeration and agitation rate in the bioreactor.
- 6. Determination of thermal death point and thermal death time for *E. coli* and for *Saccharomyces cerevisiae*.
- 7. Disruption of microbial cells (Baker's yeast) for the release of the intracellular proteins.
- 8. Immobilization of enzyme for demonstration of biological activity and immobilization efficiency.
- 9. Study of rheology of fermentation broth. Determination of viscosity and Packed cell volume (PCV)
- 10. Estimation of substrate consumption rate in fermenter batch based on glucose concentration in the broth.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

Elective IIIL T P Hr CTITLE OF THE COURSE: METABOLIC ENGINEERINGL T P Hr CCOURSE CODE: BT 7073 0 4 7 5MARKS: 1003 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the different biotechnological methods

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge

Sr.	Торіс	Description	Hrs
No.			
1	Course Description	Learning the basic biochemical concepts of metabolic pathways	15
		Understanding the role of Bioinformatics in the study of	
		metabolic pathways	
		Learning the Bioinformatics-based approaches for predicting	
		and engineering metabolic pathways	
		Classification of Enzymes	
		Classification of Metabolic Pathways	
2	Metabolic Pathway	KEGG, EMP	15
	database	Malaria Parasite Metabolic Pathways	
		ECoCYC aetaCyc	
		Boerhringer Mannheim- Biochemical Pathways	
3	Enzymes, Compounds	LIGAND-Biochemical Compound and Reaction	15
	and Reaction databases	ENZYME-Enzymes	
		BRENDA- Comprehensive Enzyme Information System	
		Full Genome Annotation through knowledge of Metabolic	
		Pathways	
		Organism Specific Metabolic Pathways, Comparison of	
		Metabolic Pathways, Engineering of Metabolic pathways,	
		Representation of Metabolic Pathways	
		Generation and Dynamic Representation of Metabolic Pathways	
		Knowledge	
		Deriving Common Principles from the Metabolic Pathways	
		knowledge	
	Te	otal number of Lectures	45

COURSE DESCRIPTION:

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Metabolic engineering edited by Sang Yup Lee and Eleftherious T. Papoutsakis
- 2. Metabolic engineering Principles and Mehodologies by Gregory N. Stephanopoulos, Aristos A. Ariostidou and Jens Nielsen.

Elective IIIPRACTICAL IN METABOLIC ENGINEERING(4 Hrs.)MARKS: 100

Teaching hours per week and credits for practicals: 2 Cr 4 Hrs

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for	
No.	Name of the experiment	Learning objective	reference and videos	
1.	Exploration and retrieval of	Understanding	http://enzyme.expasy.org/	
	metabolic pathway enzymes	pathway databases		
	from Expasy	and retrieval methods		
2.	To Explore LIGAND-	Learns about	http://www.genome.jp/ligand/	
	Biochemical Compound and	biochemical		
	Reaction database	component role		
		through metabolic		
		pathway and reaction		
		database		
3.	To explore BRENDA	Retrieval and	http://www.brenda-	
	metabolic pathways	exploration of	enzymes.org/tutorial.php	
		BRENDA database		
		for enzyme		
		information in		
		metabolic pathways		
4	To explore Malaria parasite	Understanding the	http://mpmp.huji.ac.il/	
	Metabolic pathways	Malaria parasite		
		database construction		
		and retrieval system		

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
5.	Identification of potential drug target for a given metabolic metabolic pathway	To make familiar with methodology to identify potential drug target in given metabolic pathway	http://www.genome.jp/kegg/path way.html
6.	Exploring comparative metabolic pathways by KEGG database and Biocyc	Tools give an idea to compare metabolic pathways in different species	https://biocyc.org http://www.genome.jp/kegg/path way.html
7	To construct metabolic pathway, PathoLogic and SBW	Learns construction and reconstruction of metabolic pathway with the help of offline tools	http://brg.ai.sri.com/ptools/
8.	Analysis of metabolic pathways by MetaFlux and Pathway editor	Understanding of Flux importance in the metabolic pathway analysis	http://brg.ai.sri.com/ptools/
9.	Genome annotation through metabolic pathways	Learns about genome annotation through metabolic pathways	 Metabolic Engineering - Principles and Methodologies by Stephanopoulos (2005) Elsevier publications <u>http://david.abcc.ncifcrf.gov/</u>
10.	MATLAB application in metabolic pathway	Learns utilization of MATLAB for analysis of metabolic pathways	http://kikollan.github.io/PFA- Toolbox/

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

Elective IIITITLE OF THE COURSE: MARINE BIOTECHNOLOGYL TCOURSE CODE: BT 7083 0MARKS: 1003

L T P Hr C 3 0 4 7 5

Objective:

The objective of the course is to give an overview of marine environment and its living and nonliving resources. Further the utility of the resources for overall benefit of humans and other biota is also covered.

Pre-requisites:

Students are expected to have a basic understanding in Biology.

Course Description:

Sr No	Topics	Detail syllabus	No. of
51.140	Topics	Detail synabus	lectures
1	Marine Science Fundamentals	 Oceanography: Physical and chemical properties of sea water, Ocean winds and tides- Coriolis effect, El Nino, La Nina, Ekman motion, tsunami, submarines to study marine environment Bathymetry: Ocean basins, tectonics and sediments Marine biology and ecology: Biodiversity, benthos, food chain, non-cultivable life forms 	7
2	Marine Microbiology	 <i>Microbial diversity</i>: Non-culturable microbes, extremophiles, metagenomics <i>Methods for assessment of microbial life forms:</i> sampling, identification, community structure analysis <i>Role of Microbes in marine ecosystem</i>: beneficial and harmful effects, interactions with other flora and fauna 	6
3	Marine resources- Bioprospecting	 Marine Natural Products: screening using advanced high- throughput systems, isolation and identification techniques using genomics, proteomics or transcriptomics approaches Bioactive compounds and Biomaterials: antibiotics, enzymes, alkaloids, biominerals, biocomposites, biopolymers 	8
4	Marine culture	 Aquaculture: Methods, ponds, cultivation systems, examples- Gastropod, Bivalve and Crustacean production Marine life poisoning: marine toxins Aquatic animal health management: diseases of commercial fishes, spoilage, control methods Broodstock development: Maintenance of important broodstock 	10

Sr No	Topics	Detail syllabus	
51.140	Topics		
5	Advanced technologies and products	 <i>Transgenic fish:</i> development and applications <i>Probing technologies:</i> biochemical, molecular, bioindicators <i>Biosensors</i>: role in marine environment <i>Examples</i>: of successfully commercialized products 	7
6	Marine models of regenerative medicine	 Principles of organ regeneration: Xenopus and Zebrafish as models for regeneration Examples of marine biomaterials in regeneration: tissues, bone, orthodental, optical systems, cardiovascular devices, cochlear implants, etc Challenges and ethical issues 	5
7	Marine Conservation	 Pollution in the marine environment: endangered species, dead zones, impact of pollution on marine and human life Marine protection acts and laws: for conservation, Coastal Zone Management, Coastal Aquaculture Act, Fisheries Act Marine life conservation strategies: databases, maintenance of marine life 	5
	Total		48

Methodology:

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

Books Recommended:

- 1. Marine Biotechnology I, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005) pp. 287.
- 2. Marine Biotechnology II, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005) pp. 261.
- 3. Handbook of Marine Biotechnology, Kim, Se-Kwon (Ed.), Springer (2015) pp. 1512.

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

1 otal

100

BOOKS RECOMMENDED:

- 1) Micro Algae : Biotechnology & Microbiology, E.W. Becker Cambridge University Press.
- 2) Aqua Culture An Introduction, Lee & Newman, Interstate Publishers Biotechnology an Introduction, Susan R.Barnum, Vikas Publishing House

Elective III PRACTICAL IN MARINE BIOTECHNOLOGY (4 Hrs.) MARKS: 100

Teaching hours per week and credits for practicals: 4 hours/ week; 2 credits

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Identification of phytoplanktons and zooplanktons using permanent slides	Introduce the students with different types of marine organisms.	Lab Manual Introduction to Marine Biology, (4 th Edition) by <u>George Karleskint, Richard</u> <u>Turner, James Small</u> (Brooks Scole Publication)
2	Isolation and identification of important marine yeast/fungi/bacteria	Learn the techniques of isolation of marine yeast/fungi/bacteria	Isolation and identification of important marine yeast/fungi/bacteria. <i>Indian</i> <i>Journal of Geo Marine Science</i> , 2011; 40(3), 391-397.
3	Enumeration of marine microbes using fluorescence, dark field and phase contrast microscopy	Identify number and different types of microbes from marine system	Lab Manual Introduction to Marine Biology, (4 th Edition) by <u>George Karleskint, Richard</u> <u>Turner, James Small</u> (Brooks Scole Publication)
4	Study of microbial diversity in a marine system using metagenomics and community analysis	Learn the techniques for rapid identification of marine microbial system.	16S rDNA-Based Metagenomic Analysis of Bacterial Diversity Associated With Two Populations of the Kleptoplastic Sea Slug <i>Elysia chlorotica</i> and Its Algal Prey <i>Vaucheria</i> <i>litorea</i> . 2012; Biol. Bull. 223: 138–154.
5	Function or molecular screening for potential bioactive compounds from marine bacteria (enzyme, polysaccharide/biofilm, biosurfactant or bioemulsifier)	Identify bioactive compounds from marine organisms and their applications	Lab Manual Introduction to Marine Biology, (4 th Edition) by <u>George Karleskint, Richard</u> <u>Turner, James Small</u> (Brooks Scole Publication)
6	Bioindicators for detection of marine pollutants	Use of organisms to detect the marine pollution.	Bioindicators: the natural indicator of environmental pollution. <i>Frontiers in Life</i> <i>Science</i> , 9:2, 110-118
7	Study of quality control parameters for edible marine/fresh water fishes using molecular diagnostic	Quality control measures for edible marine/fresh water food	Comparison of selected methods of assessing freshness quality and remaining storage life of iced gilthead sea bream.

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
	techniques		Food Research International 36 (2003) 551–560
8	Optimization of different media for growth of algae	Preparation of media and its screening for optimum growth of algae	Culturing Algae (2 nd Edition) by Daniel E. James. Carolina Biological Supply Company.
9	Algal Cell Culture and bio- fuel production from algal biomass	Learn the production of bio-fuel from algae	Micro Algae : Biotechnology & Microbiology,E.W.Becker Cambridge University Press
10	Preparation of different types of ponds and aquaponics chambers used in aquaculture	To learn preparation of ponds and aquaponics chambers for growing marine organisms	http://www.fao.org/3/a- i4021e/index.html
11	Visit to Marine Research Institute.	To learn the research as well as institutional activities carried out by institute	

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

Elective IIIL T P Hr CTITLE OF THE COURSE: AGRICULTURAL BIOTECHNOLOGYL T P Hr CCOURSE CODE : BT 7093 0 4 7 5MARKS : 2003 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic concepts and advanced molecular biology applications in Agriculture Biotechnology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different biotechnological methods to improve the crop production and sustainable agriculture.

PREREQUISITES

The course is an application science, hence the student must have a background with knowledge in the basics of Plant Physiology, Plant Tissue culture and Molecular Biology.

Sr.	Perticulars	Hrs.
No.		
1.	Introduction: Agriculture and Agricultural Biotechnology	2
2	Clonal Germplasm	
	Micro propagation	4
	In vitro production of pathogen and contaminant free plants	3
3	Biotechnology- Methods of Crop Improvement	3
	Genetic Engineering of Crop Plants	3
4	Transgenic Plants	4
	Molecular Markers	3
	QTL Mapping	3
5	Metabolite Production	
	Production of Secondary Metabolites	5
	Production of foreign compounds in transgenic plants	
6	Biofertilizers and Bioremediation	7
	Microbial Biopesticides, Biofungicides, Herbicides and Agricultural	
	antibiotics	
7	Biotechnology in Agriculture	3
	Ethical Aspects and Public Acceptance	
8	Animal farming, Animal farming with organic concept, Animal Breeding &	5
	Genetically modified animal products.	
	TOTAL	45

COURSE DESCRIPTION:

METHODOLOGY

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOK RECOMMENDED:

- 1) Biotechnology by B. D. Singh, Kalyani Publication
- 2) Biotechnology Fundamentals and applications by S. S. Purohit, Student Edition
- 3) Agricultural Biotechnology-Arie Altman, CRC Press
- 4) Biotechnology- An Introduction by Susan R. Barnum, Vikas Publishing House

PRACTICALS IN AGRICULTURE BIOTECHNOLOGY (4 Hrs. Per Week)

MARKS: 100

LIST OF PRACTICALS

- 1. Use of bioreactors in plant secondary metabolite production
- 2. Application of Polymerase Chain reaction Marker based selection by using PCR
- 3. *Agro-bacterium*-mediated transformation protocol and selection of transformed regenerated plants (Laboratory visit)
- 4. Visit to micro-propagation and Molecular Biology laboratory a laboratory with automated Genotyping/sequencing facility.
- 5. Green house technology: Visit to functional green house. Climate: Measurement of temperature, humidity, air velocity, CO2, inside the green house. Calculation of environment indices inside green house. Fertigation, Post harvest.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

SEMESTER VIII

Course Code	Course Name	L	Т	Р	Hr	Cr	Marks
BT 801	Protein Modeling and Drug Designing	3	0	4	7	5	200
BT 802	Proteomics	3	0	2	5	4	150
BT 505	Biomedical Engineering	3	1	0	4	4	100
BT 803	Nanobiotechnology	3	0	2	5	4	150
BT 804	Seminars in Biotechnology & Advances in Biotechnology	3	1	0	4	4	100
BT 805 / BT 710	Elective – IV	3	0	4	7	5	200
	Total	18	2	12	32	26	900

Elective III (BT 805: Clinical Research / BT 710 : Biopharmaceuticals)

TITLE OF THE COURSE: PROTEIN MODELING AND DRUG DESIGNINGCOURSE CODE: BT 801L T PMARKS: 1003 1 4 8 6

OBJECTIVE

- 1. To create general understanding regarding basic principles involved in modern medicinal/structural chemistry systems.
- 2. To familiarize the student with basic concepts in molecular modeling as: how to build the molecule, how to find out the coordinates of the molecule, how to use the programs that are available in graphics designing.
- 3. To familiarize students with concepts in molecular mechanics and dynamics and to study the energy minimization algorithms
- 4. To introduce them to concepts in quantum chemistry and methods for calculating the energies, that are required in energy minimization and docking studies
- 5. To understand the methodology involved in structure based drug designing, and enzyme inhibition strategies

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in classical and modern molecular modeling and drug designing, concepts and laws applicable to quantum-mechanics particles. This would enable him to understand the entire concepts in computerized drug designing and interaction concepts

PREREQUISITES:-

This is an introductory course for the students who want to understand the concepts in molecular modeling and drug designing and should make a compulsory subject

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Introduction to	Cartesian, and crystal coordinate system, Reducing molecular coordinates to fit Computer	08
	graphics:	 Reducing molecular coordinates to fit Computer monitor Basic principle of molecular graphics and structure visualization Small molecular structural data bases (Chembridge data base) Protein structural data base (PDB) Different molecular graphics packages, Graphics Programs: HAMOG, RASMOL, MOLMOL 	
2	Building of small	Building of small molecules	10
	molecules	Internal and cylindrical polar co-ordinate system	
		Methods used in building small molecules using crystal, Cartesian, polar and chemical internal	

COURSE DESCRIPTION

SYLLABUS FOR M.TECH (INTEGRA D) BIOTECHNOLOGY BATCH (2017-18)

			coordinates. Building of Biopolymers DNA & oligopeptides in different secondary structure	
3	Optimization of		Energy minimization by systematic search	10
	geometries of		method	
	small molecules:		plotting conformation energy contours	
			(Ramachandran plot), and finding out minimum	
			energy conformation	
		٠	Gradient based Energy minimization methods	
		٠	Molecular mechanics approach	
		٠	Molecular Dynamics method	
		٠	Monte Carlo method	
		۲	Genetic algorithm	
4	Use of Quantum	۰	Schrödinger equation	10
	chemical methods	٠	Basic Formalism in quantum mechanics	
	for geometry	٠	Schrödinger equation for a multi- electron atom	
	optimization:	٠	Schrödinger equation for a molecule	
	-	۰	Hartree- Fock Method	
		•	Different MO methods	
		•	Molecular electrostatic potential	
		•	Optimization of geometries of small molecules	
		•	Quantum chemical indices	
5	Drug designing	•	Pharmacophore identification and novel drug	06
			designing, structure based drug design enzyme	
			inhibition strategies	
			Total Lectures	36

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a student"s is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Molecular Modeling, Holtje and Folkers G Weinheim New York
- 2. Essentials of Drug designing, V. Kothekar Dhruv Publications 2005
- 3. Molecular modeling: principles and applications, Leach.A.R
- 4. Molecular modelling and drug design, Andrew Vinter A.and Gardner, M Boca Raton: CRC Press, 1994

PRACTICAL IN PROTEIN MODELING AND DRUG DESIGNING (2 Hrs .per week) MARKS 50

The course will also have a practical component. The practical training would be in the area of building molecules drawing molecules visualizing the Diffraction Grating: Use of diffraction grafting for determination of wavelength of spectral lining.

BUILDING MOLECULES

glycine

- glycine-glycine
- alanine
- glycine-alanine
- phenylalanine
- benzene
- SPDBV
- calculate the electrostatic potential using spdbv software
- analysis of Ramachandran plot using spdbv software

HYPERCHEM

Use of molecular modeling software HYPERCHEM for building small molecules.

Computation of quantum chemical parameters using HYPERCHEM Creating database for small molecular indices using HYPERCHEM

MOE

- Use of molecular modeling software MOE for building small molecules
- Use of molecular modeling software MOE for building oligopeptides and
- oligonucleotides Computation of force field parameters using MOE
- Computation of conformation map of a small molecule using MOE
- Optimization of geometries of small molecules using MOE
- Creating database for small molecular indices using MOE

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

TITLE OF THE COURSE: PROTEOMICS COURSE CODE : BI 708 MARKS: 100

L T P Hr C 3 0 0 3 3

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in protein study and drug discovery.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of proteins to proteomics and new techniques used in proteomics that are MALDI-TOF, 2DE, NMR, ESI and various databases SCOP, CATH, PIR etc.

PREREQUISITES

Since the course is very advance in nature, student must know about Protein structure 20 different amino acids, there structure and Basic separation and visualization techniques for nucleic acids.

COURSE DESCRIPTION

Sr.	Торіс	Description	Hrs
No			
1	General introduction to the proteomics.	History, What is proteome, structural of amino acids in protein physiological complexity of genome/proteome?	5
2	2D gel electrophoresis data, mass spectrometry and protein characterization	What is 2D-PAGE, protein microarrey-MALDI- TOF, NMR, ESI, Affinity chromatography protein protein interaction, m-RNA splicing.	7
3	ESTs, sequence dependent properties of proteins, and post translational modifications Protein folding and evolution.	Expressed Sequence Tags, Amino acid structure, Acylation, Methylation, Alkylation etc	8
4	Hierarchical nature of Protein Structure	Pri,sec,ter,quat structure,,Ramchandran plot	6
5	Fold classification and identification	SCOP	7
6	3D structure of protein and its relation to function	Protein structure prediction and its application.	7
7	Computational resources Internet tools	NCBI,EMBL,PDB,Ensembl	8
		Total lectures,	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY) Examination Duration

Marks

Total		100
End Semester Exam	2 hours 30 minutes	60
Teachers assessment		10
II Internal	45 minutes	15
I Internal	45 minutes	15
BATCH (2017-18)		
SYLLABUS FOR M.TECH (INTEGF	RATED) BIOTECHNOLOGY	

BOOKS RECOMMENDED:

Protein to proteomics by J. Simpson, Genomes II T.A. Brown, Protein Structure by Brandent & Tooz

Bioinformatics A practical guide to analysis of genes and protein By Baxevanis A. D & Ouellette B.F.F Wiley

Developing Bioinformatics Computer Skills by Cynthia Gibas, Per Jambeck (Paperback)

Bioinformatics Methods and Protocols (Methods in Molecular Biology, Vol 132) by Stephen Misener (Editor), Stephen A. Krawetz (Editor)

Bioinformatics Basics Applications in Biological Science and Medicine by Hooman H. Rashidi, Lukas K. Buehler

Teaching hours per week and credits for practicals only: 2 Hr 1 Cr Marks for Practicals: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for
			reference and videos
1.	2D gel electrophoresis	Usage of a major tool for determining the proteome of	1. Liebler (2001)Introduction to
		a cell	Proteomics: Tools for
2.	Gel extraction of	Protein identification	New Biology: Humana
	proteins/in situ digestion		Press 1 st Edi. Chapter 6
	of proteins for		2. Brandon and Tooze
	identification by Mass		1999 Introduction to
2	spectrometry analysis		protein structure
3.	Database searching for	Protein identification	Garland science
	protein identification		Publishing 2nd Edi.
4.	Co-immunoprecipitation	To understand interacting	Chapter 6
	analysis for determining	proteins	3. Bioinformatics by
	protein-protein		David Mount
	interactions		Sequence and Genome
5.	Bioinformatics approach	To understand interacting	Analysis 2 ^{11d} Edi Cold
	for determining	proteins in a pathway or	Spring Harbour
	interactome (protein-	carrying out similar function	Publishing
	protein interaction		-
	network) using BIND, DIP		
	& GRID		

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Attendance: 5 marks (above 80% attendance gets full marks) Journal writing: 5 marks

TITLE OF THE COURSE: BIOMEDICAL ENGINEERING COURSE CODE: BT 505 MARKS: 100

L T P Hr C 3 104 4

OBJECTIVE

Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health. It advances fundamental concepts; creates knowledge from the molecular to the organ systems levels; and develops innovative biologics, materials, processes, implants, devices, and informatics approaches for the prevention, diagnosis, and treatment of disease, for patient rehabilitation, and for improving health.

LEARNING OUTCOME

The students will be able to apply knowledge of mathematics, science, and engineering to design a system, component, or process to meet desired biotechnology needs. They will be able to develop a biomedical product considering realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

PREREQUISITES

Understanding of animal physiology, physics, engineering and biochemistry is a prerequisite.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Introduction	-History of Biomedical engineering	02
		to create new biomedical products	
		-Biomimicry and its role in biomedicine	
2	Biomedical	-Regular optical methods and imaging systems, electro-	06
	Instrumentation	mechanical probes	
		-Bioelectric amplifiers	
		-Patient monitoring systems	
		-Impedance techniques in physiological measurements	
3	Diagnostic	- Blood Flow meters	07
	equipments	- Pulmonary function analyzers	
		- Blood gas analyzers	
		-Cell counters	
		- Endoscopy	
		-Biophysical activity of organs	
		-Electrical simulation, ultrasonic waves, magnetic	
		waves in diagnosis and therapy	

COURSE DESCRIPTION

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

	,	- Robotics in diagnosis and therapy	
4	Tissue Biomechanics	- Biological processes in tissue organization (molecular, cellular, extracellular, and organ levels of hierarchy)	06
		- scaling laws (architecturar) and continuum	
		and their organization	
5	Piomotoriala	Molecular and structural properties of biological	07
5	Diomaterials	materials like collagen silk bone protein adhesiyes	07
		self-assembling pentides	
		-Molecular structural properties of biomaterials of	
		microbial plant or other natural origin	
		- Methods for biomaterials surface characterization:	
		matrix synthesis degradation and contraction	
		-materials science and cell biology principles for the	
		design of medical implants, artificial organs, and	
		matrices for tissue engineering	
		-artificial organs	
6	Regenerative	-Principles of organ regeneration	08
	medicine	-Implants and their coherence with biological	
		systems/biocompatibility	
		-Biological processes involved in wound healing and	
		tissue remodeling following implantation in various	
		organs	
		-Examples of biomaterials in regeneration in tissues,	
		bone, orthodental, optical systems, cardiovascular	
		devices, cochlear implants, etc	
		-Challenges and ethical issues	
7	Drug delivery	- Principles of Controlled Drug Delivery, controlled	03
	systems	release devices, Biomaterials in drug delivery	
		- Biomaterial based drug delivery system efficacy and	
		challenges	
8	Biosensors	-Components and properties of a typical biosensor	07
		-Types of biosensors (Calorimetric, Potentiomentric,	
		amperometric, optical,	
		Piezo-electric, Immuno based sensors)	
		-Representative design of each type of biosensor	
		-Biomarkers and their role in development of medical	
		biosensors	
		- Applications related to healthcare, bio-defense and	
		food and water safety	
	Personalized	-Concept and applications	02
	medicine	- Concerns and market response	
Total	Lectures	•	48

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

RECOMMENDED BOOKS:

- 1. J B Park, Biomaterials Science and Engineering, Plenum Press, 1984.
- 2. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 3. D N Ghista, Biomechanics of Medical Devices, Macel Dekker, 1982
- 4. Khandpur R S, Handbook of Medical Instrumentation, Tata Mc Graw Hill
- 5. D. L. Wise, "Applied Bio Sensors", Butterworth, London.
- 6. Cromwell, Weibell & Pfeiffer, "Biomedical Instrumentation & Measurement", Prentice Hall, India
- 7. Carr & Brown, "Introduction to Biomedical Equipment Technology" Pearson Education, Asia.
- 8. Robbinson C.J., Rehabilitation Engineering. CRC press 1995
- 9. Weiss, Thomas Fischer. Cellular biophysics. Cambridge, Mass., MIT Press.
- 10. Peter J. Carrington, John Scott and Stanley Wasserman, eds., Models and Methods in Social Network Analysis Cambridge University Press, 2005

COURSE NAME: NANOBIOTECHNOLOGY COURSE CODE: BT 803 MARKS : 150

L T P Hr C 3 0 2 5 4

OBJECTIVE:

The objective of the course is to create general understanding amongst the students in the subject of Core nanotechnology and its applied parts such as nanobiotechnology and bionanotechnology through in-depth lectures & laboratory practicals. The objective of the course is to understand them a general overview, concepts and basic principles in the subject of nanobiotechnology with emphasis for project in the field of nanotechnology.

LEARNING OUTCOME:

At the end of the semester, it is expected that students understood the basic principles of core nanotechnology and bionanotechnology. It is expected that they will be more confident to use the basic knowledge for their short term projects during the semesters.

PRE-REQUISITES:

This is an advanced level course. Students are expected to have an understanding of introductory knowledge in Physical science, material science, polymer science, micro-fabrication, organic and synthetic chemistry and molecular biology.

S.	Topic	Description	Hrs
No			
1	Introduction and	Introduction	2
	Basics	Definition of Nanotechnology, nanobiotechnology and	
		bionanotechnology	
		Nanotechnology and Today'sWorld	
		Importance of Nanoscale Science and Technology	
2.	History and Evolution	Contribution of Different Scientist in Nanotechnology	4
		 Richard Feynman 	
		• K. Eric Drexler	
		 Gerd Binnig and Heinrich Rohrer 	
		 Don Eigler and Erhard Schweizer 	
		 Professor Richard Smalley 	
		Different Timelines of Nanotechnology development	
3	Nanoparticles and	Introduction	6
	nanomaterials	Types of nanoparticles	
		• Pure metals :Gold, Silicon, Silver, Cobalt	
		○ Metal oxides: Silica,Zinc oxide, Iron	L
		oxideAlumina, Titania	
		Properties of nanomaterial and nanomaterial	
		Toxic effects of nanomaterials	

COURSE DESCRIPTION

SYLLABUS FOR M.TECH (INTEGRATED IOTECHNOLOGY

0
ð
;
6
5
6
8
1
1
1

SYLLABUS FOR M.TECH (INTEGRATED BATCH (2017-18)	• IOTECHNOLOGY Dr.D.Y.	PATIL VIDYAPEETH, PUNE
	 Tissue repair and implantation Bioresorable materials 	
	Biochips Environmental Management	45

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Bionanotechnolgy: Lesson from Nature, David S. Goodsell, Willey-Liss, First edition, 2004
- 2) Nanoscale technology in Biological Systems by Ralph Creco, Fritz Prinz and R. Lane Smith; CRC Press, First edition, 2005.
- 3) Nanobiotechnology: Concepts, applications and Perspectives, Christof M. Niemeyer (editor), Clad AMirkin (Editor), Wiley VCH, First edition, 2004.
- 4) Nanobiotechnology: Bioinspired Devices and Material of Future by OdedShoseyov and Ilan levy, Human Press, First edition, 2007.
- Nanobiotechnology protocols (Methods in Molecular biology) by Sandra J Rosenthal David W. Wright, Human Press, First edition, 2005
- 6) The Nanobiotechnology Handbook, YubingXie, CRC press,
- 7) Introduction to Nanoscience, S.M. Lindsay, Oxford universal Press, First Edition, 2010 Nanotechnology: Understanding small system, Ben Rogers, SumitaPennathur and Jesse Adams, CRC Press, Second edition, 2011
- Introduction to Nanotechnology, Charles Poole and Frank Owen, Wiley, First Edition, 2006 Nanocomposites Science and Technology Pulickel M. Ajayan, Linda Schadler, Paul Braun, Wiley-VCH Verlag, 2003.

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18) PRACTICAL IN NANOBIOTECHNOLOGY (2 Hrs.) MARKS : 50

PRACTICAL COURSE:

- Preparation of silver nanoparticles by chemical methods. 1.
- Characterisation of ZnS nanoparticles by optical methods. 2.
- Templeted synthesis of Fe_3O_4 nanoparticles. 3.
- Synthesis of ZnS nanoparticle by using bacteria. 4.
- Biological synthesis of silver nanoparticles using plant extract. 5.
- 6. Study of antimicrobial activity of silver nanoparticles.
- Protein tagging of nanoparticles. 7.
- Internalization of nanoparticles in mammalian cells. 8.
- Synthesis of quantum dots. 9.
- 10. Drug attachment to nanoparticles.
- 11. DNA attachment to nanoparticles.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

COURSE NAME: SEMINARS IN BIOTECHNOLOGY AND ADVANCES IN BIOTECHNOLOGY **COURSE CODE: BT 804** LT P Hr C 3 0 0 3 3

OBJECTIVE OF THE COURSE:

In view of the increasing knowledge in the field of biotechnology student should be made aware of the latest advancements in biotechnology.

LEARNING OUTCOME:

After the presentation the student get trained in performing literature survey and presenting a scientific paper.

METHODOLOGY:

MARKS: 100

Student will be presenting the seminar every week as per the schedule and will be assessed by the experts.

COURSE DESCRIPTION

Advanced topics will be taught by outside experts and senior faculty of the institute. The student will be assigned one Seminar on any advanced topic of Biotechnology.

EVALUATION METHODOLOGY:

The student seminars will be assessed for evaluation

Elective IV TITLE OF THE COURSE: BIOPHARMACEUTICALS COURSE CODE: BT 710 MARKS: 100

L T P Hr C 3 0 4 7 5

OBJECTIVE OF THE COURSE:

To create general understanding regarding basic knowledge of Biopharmaceuticals to familiarize the student with the production techniques, mode of action and therapeutic uses of Biopharmaceuticals.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient understanding of the current status of Biopharmaceuticals.

PREREQUISITES

Students should know the basics of Microbiology, Biochemistry.

COURSE I	DESCRIPTION
-----------------	-------------

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Overview	Introduction and current status of Biopharmaceuticals in the pharmaceutical industry How are Biopharmaceuticals different from Pharma ceutical products	4
2	The drug manufacturing process	Good Manufacturing Practices, Source of Biopharmaceuticals, production, analysis and immunological approaches for the detection of contaminants in the final product.	6
3.	Hormones of therapeutical interest	Insulin, Insulin receptors, production of human insulin by rDNA technology, insulin formulation, Glucagon, Human growth factors(hCG) – biological effect, recombinant hCG- production and uses, Gonadotrophins, FSH , LH.	6
3	Blood Products and Therapeutic Enzymes	Blood cells, blood substitutes, serum protein isolation, haemostatic, coagulation pathway, blood factor isolation for transfusion, anticoagulants, thrombolytic agents, enzymes of therapeutical value	6
5	Growth Factors	Growth factors and wound healing, Insulin like growth factors (IGFs)- biochemistry, receptors, binding proteins, biological effects, IGFII and effect on fetus development and reproduction neuronal, Epidermal growth factor (EGF), Platelet derived growth factors (PDGF).	6
6.	Haemopoietic growth factors	Erythropoietin (EPO) - receptors, transduction regulation therapeutic applications.	4
	Antibodies,	Polyclonal antibodies, Monoclonal antibodies and their	4

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

7.	vaccines and	production by hybridoma technology, applications of	
	adjutants	Monoclonal antibodies	
		Vaccine Technology, traditional vaccine production, impact of	
		genetic engineering on vaccine technology, Vaccine adjuvant.	
8	Nucleic acid therapeutics	Basic approach to gene therapy, vectors used in gene therapy, manufacturing plasmid DNA, antisense technology, and ribozymes.	4
9	Cytokines, Interleukins and Interferon	Biological effects, biochemistry, production and therapeutic applications	5
		Total lectures	45

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

1. Biopharmaceuticals- Biochemistry and Biotechnology. Second Ed. Garry Walsh. John Wiley and Sons. 2003

eaching hours per week and credits for practicals only: 4 Hr 2 Cr Marks for Practicals: 100

Hands-on practicals as listed below shall be performed or small research projects in this area can be undertaken based on the availability of faculty

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for
No.			reference and videos
1	Chemical assay for estimation	To know the simple assay	1. Kayser O, Warzecha H.
	of penicillin	for antibiotic	Pharmaceutical
	/streptomycin/tetracycline	determination.	biotechnology: drug
	antibiotics	To understand chemical	discovery and clinical
		composition and reactivity.	applications. John Wiley
		To know the mode of	& Sons; 2012.
		action of antibiotics	2. Beale JM, Block J, Hill
2	Bioassay to determine the	To know the simple assay	R. Organic medicinal
	antifungal activity of standard	for determination of	and pharmaceutical
	Aureofungin/ clotrimazole/	antifungal compounds.	chemistry. Philadelphia:
	fluconazole/	To know the mode of	Lippincott Williams &
		action of antifungal	Wilkins; 2010.

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

3	Bioassay to determine the antibacterial activity of standard penicillin, streptomycin, tetracycline antibiotics by standard disc/well method Sterility testing of commercial injectable such as saline water, eye drops or ear drops	compounds. To understand the structure of antibiotic To know the role of bioassay in pharmaceuticals. To understand the disc and well diffusion assay method To determine the quality of pharma products with respect to microbial contamination. To understand the commercial significance of sterility testing in	 Foye WO. Foye's Principles of Medicinal Chemistry. Lemke TL, Williams DA, editors. Lippincott Williams & Wilkins; 2008 Lachman, Leon et al. "The Theory and Practice of Industrial Pharmacy", 3rd Edition, Varghese Publishing House, 1986. Godkar PB, Godkar DP, Textbook of Medical Laboratory Technology Bhalani Publishing
		biopharmaceutical products	House, 2014 by 6 Husain A Practical
5	Extraction and detection of antimicrobial compounds from	To understand different method of extraction. To know antimicrobial compounds from plant origin.	 6. Husain A, Practical Pharmaceutical Analytical Techniques, Darshan Publishers, 2015 7. Indian Pharmacopeia.
	plant origin	To know the diffusion of antibiotic and factors affecting it	2007, Volume 1, Published by The Indian Pharmacopeia
6	Determination of glucose in serum/plasma by GOD/POD method	To estimate the concentration of glucose in samples. The correlation of glucose concentration with different clinical conditions	Commission, Ghaziabad; Tests for pyrogens
7	Determination of endotoxin in the therapeutic formulation (WFI, gentamycin injection ampicillin injections) by using LAL test reagent	To know endotoxin of bacterial origin, its structure and their role. To learn Significance of LAL test at commercial level	
8	Determination of SGPT/SGOT activity in serum / plasma sample by chemical method	To estimate the concentration of SGOT and SGPT in samples. To learn importance of SGPT and SGOT activity with functional test The correlation of glucose concentration with different clinical conditions	
9	LIMIT test for chloride, sulphates, iron and heavy metals in pharmaceutical products.	To learn threshold level of ions in the pharmaceutical products. To understand the	

		significance of LIMIT test at commercial level
10	One day industrial visit to a pharmaceutical company	To understand the commercial production of biopharmaceutical products

Internal evaluation will be based on following criteria

For practicals of 2 credits and 100 marks, internal evaluation will be for 40 marks with following break-up: Practical: 10 marks Attendance: 10 marks (above 80% attendance gets full marks)

Attendance: 10 marks (above 80% attendance gets full marks Laboratory assignment: 10 marks Journal writing: 10 marks

(Elective I v)	
TITLE OF COURSE: CLINICAL RESEARCH	L T H Hr C
COURSE CODE MT 806	30033
MARKS: 100	

OBJECTIVE OF COURSE:

The primary objective of this course is to familiarize the students about higher educational areas after their graduation. The course also aware students about current situation of clinical research in India and future for clinical research in India topics required for clinical research establishment.

LEARNING OUTCOME:

At the end of the course students should be able to understand various disciplines in the field of clinical research and it will help them for selecting their dissertation in final year.

PREREQUISITE:

No prerequisite is required for the course.

COURSE DESCRIPTION:

Sr.	Торіс	No. of Lectures
No.		
1	Introduction	02
2	History	01
3	Drug development process	01
4	GLP and GCP in clinical research	02
5	ICH in relation to clinical research	02
6	SOP in clinical research trials	01
7	Basic terminology in CR	02
8	Ethical theories and principles	03

DY PU Dr. D.Y. PATHLY VIDYA PEETH, PUNE

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

9	Ethics committees	01
10	Audits and inspection in CR	02
11	FDA audit- role of investigators and sponsors	03
12	FDA protecting consumers and protecting public health	02
13	Role of biostatistics in CR	02
14	Clinical trial protocol design and development	02
15	Data base closure	01
16	Data cleaning	01
17	Designing case report forms (CRF)	02
18	EMEA European Medicines Agency	02
19	EMEA committees	02
20	Fraud and misconduct in CR	02
21	INDA(Investigational new drug application) and NDA (New	04
	drug application)	
22	Informed consent process	01
23	Medical writing	01
24	Pharmacoepidemiology	01
25	Pharmacovigilance	01
26	Schedule Y and its application	01
27	Project management	02
28	Current status of CR in India	01
	TOTAL LECTURES	48

METHODOLOGY

The course would be taught through lectures, demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

Teaching hours per week and credits for practicals only: $4~{\rm Hr}~2~{\rm Cr}$ Marks for Practicals: 100

Hands-on practicals as listed below shall be performed or small research projects in this area can be undertaken based on the availability of faculty

Sr.	Name of the	Learning objective	Literature/ Weblinks for reference and
No.	experiment		videos
1	Visit to clinical	To understand about the	1. Principles and Practice of Clinical
	research	importance of ethics,	Research, 3rd Edition, Editors: John
	laboratory to	biological safety and	Gallin Frederick Ognibene, Hardcover

SYLLABUS FOR M.TECH (INTEGRATED) BIOTECHNOLOGY BATCH (2017-18)

	study the requirement of a clinical lab, biosafety measures and collection and safe handling of clinical samples	handling in clinical research set up	 ISBN: 9780123821676, eBook ISBN: 9780123821683. Publisher: Academic Press. Manual of clinical laboratory Immunology- 6th Edition. Noel R Rose, Robert. G. Hamilton, Barbara Detrick. ASM Press. Textbook of Clinical Trials, 2nd Edition
2	2 Drafting of patient consent form and questionnaire for recruitment of subjects for clinical studies	To know about the patient consent form and ways to exchange information with patients and medico- legal requirements	 David Machin (Editor), Simon Day (Co-Editor), Sylvan Green (Co-Editor). ISBN: 978-0-470-01014-3. Publisher: Willey. 4. <u>http://www.mayoclinic.org/tests-</u> <u>procedures/complete-blood-</u> <u>count/details/results/rsc-20257186</u>
3	B To perform histopathological procedures and tests for clinical samples	To know about the histopathology protocols and understanding the structure and organization of normal versus pathological tissues	 5. <u>https://www.nhlbi.nih.gov/health/health</u> <u>-topics/topics/bdt/types</u> 6. <u>http://www.fcswp.org/st-francis-</u> <u>memorial-hospital/education/common-</u> <u>blood-tests-and-their-meanings/</u> 7. http://www.precisionnutrition.com/all-
4	Molecular diagnostics of pathological samples using PCR, etc	To understand the more updated molecular diagnostics procedures	about-blood-work
5	5 To perform biochemical investigation of pathological samples (blood chemistry, lipid profile, etc)	To understand the principle of various diagnostic procedures routinely used in clinical investigations	

Internal evaluation will be based on following criteria

For practicals of 2 credits and 100 marks, internal evaluation will be for 40 marks with following break-up:

Practical: 10 marks

Attendance: 10 marks (above 80% attendance gets full marks) Laboratory assignment: 10 marks Journal writing: 10 marks

SEMESTER IX & X

SR. NO.	PROJECT	CREDITS
1	Industrial Posting or Research	
2	Project Preparation	
3	Monthly review of the work	50
4	End Semester Evaluation of the Project report and	
	Presentation and Viva voce	