

DR. D. Y. PATIL VIDYAPEETH

PIMPRI, PUNE – 411 018

DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE

TATHAWADE, PUNE

SYLLABUS FOR

B. TECH BIOTECHNOLOGY

(BATCH 2017-18)

COURSE STRUCTURE FOR B. TECH BIOTECHNOLOGY

	SEMESTER I						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BS 101	Physics	3	0	2	5	4	150
BS 102	Organic chemistry	3	0	4	7	5	200
BS 103	Mathematics	3	1	0	4	4	100
BT 101	Introduction to Electronics &	3	0	2	5	4	150
D 1 101	Instrumentation Engineering	3				4	130
BI 101	Introduction to Computers & Computer	3	0	4	7	5	200
DI 101	Organization			-	'		200
HU 101	Communication Skills	1	2	0	3	3	100
HU 102	Disaster Management	2	0	0	2	2	100
	Total	18	3	12	33	27	1000
BS - I	Basic Sciences, HU - Humanity, BT - Biotec	hnolog	y, BI	- Bioi	inform	atics	
	SEMESTER II						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BS 201	Physical Chemistry	3	1	0	4	4	100
BS 202	Introduction to Bio-molecules	3	0	4	7	5	200
BS 203	Biostatistics	3	1	0	4	4	100
BT 201	Engineering Mechanics	3	0	2	5	4	150
BI 201	C Programming	3	0	4	7	5	200
BS 204	Environmental Sciences	3	0	2	5	4	150
	Total	18	2	12	32	26	900
	SEMESTER III						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BS 301	Analytical Techniques	3	0	4	7	5	200
BS 302	Cell Biology	3	0	2	5	4	150
BS 303	Microbiology	3	0	4	7	5	200
BS 304	Genetics	3	1	2	6	5	150
BS 305	Mammalian Physiology	3	1	0	4	4	100
BT 301	Plant Physiology	3	1	0	4	4	100
	Total	18	3	12	33	27	900
	SEMESTER IV						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BT 401	Molecular Biology-I	3	0	4	7	5	200
BT 402	Metabolism	3	1	0	4	4	100
BT 408	Animal Tissue Cultures & Stem Cells	3	0	2	5	4	150
BT 404	Plant Tissue Culture	3	0	2	5	4	150
BT 405	Immunology	3	0	2	5	4	150
BI 301	Concepts in Bioinformatics	3	0	4	7	5	200
	Total	18	4	14	33	26	950

	SEMESTER V						
Course Code	Course Name	L	Т	P	Hr	Cr	Marks
BT 501	Molecular Biology-II	3	0	4	7	5	200
BT 502	rDNA Technology	3	1	0	4	4	100
BT 302	Enzymology & Enzyme Technology	3	0	4	7	5	200
BT 503	Basic Pharmacology and Toxicology	3	1	0	4	4	100
BT 504	Fermentation Technology	3	0	4	7	5	200
BT 506 / BT 507	Elective-I	3	0	4	7	5	200
	Total	18	2	16	36	28	1000
Elective	I (BT 506 : Food Biotechnology / BT 507 :	Envir	onme	ental l	Biotecl	nnolog	y)
	SEMESTER VI						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BT 601	Virology	3	1	0	4	4	100
HU 601	Principles of Managements & Entrepreneurial Development	3	0	0	3	3	100
HU 602	Bio safety and Bioethics & IPR	3	1	0	4	4	100
BT 602	Genomics, Transcriptomics & Proteomics	3	1	2	6	5	150
BT 603	Biochemical Engineering	3	0	4	7	5	200
BI 504 / BI 606 / BI 603	Elective-II	3	0	2	5	4	150
	Total	18	3	8	29	25	800
Elective II (BI	504: Operating System / BI 603:Perl & Bio	perl /	BI 60	06:Co	mpute	r Netv	vorking)
	SEMESTER VII						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BT 701	Biomembrane and Molecular Cell Signaling	3	1	0	4	4	100
BT 702	Nanobiotechnology & Biosensors	3	0	4	7	5	200
HU 701	Quality Control Management in Biotechnology	3	1	0	4	4	100
BT 703	Advances in Biotechnology	3	0	0	3	3	100
BT 704	Seminars in Biotechnology	3	1	0	4	4	100
BT 707 / BT							
708 / BT 709 /	Elective-III	3	0	4	7	5	200
BT 710							
	Total	18	3	8	27	25	800
Elective III	(BT 707: Metabolic Engineering / BT 708 Agricultural Biotechnology / BT 710 : B				_	y / BT	709 :
	SEMESTER VIII						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
	Project					25	400

COURSE STRUCTURE FOR B. TECH BIOTECHNOLOGY

	SEMESTER I						
Course Code	Course Name	L	T	P	Hr	Cr	Marks
BS 101	Physics	3	0	2	5	4	150
BS 102	Organic chemistry	3	0	4	7	5	200
BS 103	Mathematics	3	1	0	4	4	100
BT 101	Introduction to Electronics & Instrumentation Engineering	3	0	2	5	4	150
BI 101	Introduction to Computers & Computer Organization	3	0	4	7	5	200
HU 101	Communication Skills	1	2	0	3	3	100
HU 102	Disaster Management	2	0	0	2	2	100
	Total 18 3 12 33 27 1000						
BS - Basic Sciences, HU - Humanity, BT - Biotechnology, BI - Bioinformatics							

TITLE OF THE COURSE: PHYSICS

COURSE CODE: BS-101 L T P Hr C MARKS: 150 3 0 2 5 4

OBJECTIVE

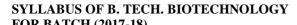
The objective of this course is:

To create general understanding regarding basic physical principles involved in living systems.

To familiarize the student with basic concepts in physics as: classical optics used in microscopes and telescopes, thermometry and heat, mechanical, fluid and solid state properties.

To familiarize students with concepts in digital electronics, lasers, sound waves, electricity.

To introduce them to concepts in modern physics such as: production of X-ray, X-ray crystallography, quantum mechanics etc.


LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in classical and modern physics, laser sources, concepts and laws applicable to quantum-mechanical particles. This would enable him to understand use of physical methods in understanding Biomolecular structure and interactions

PREREQUISITES

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Optics: Interference	Introduction to optics, Principles of superposition,	08
	Diffraction &	Constructuve & destructive Interference, Types of	
	Polarization	Interference, Newton"s rings.	
		Diffraction- Types of diffraction, Diffraction grating,	
		Rayleigh"s criterion, Resolving power of Microscope and	
		Telescope.	
		Polarization of light waves, Polaroid, Optical activity.	
2	Thermometry and	Principles of Thermometry, Temperature and it's	05
	Heat	measurements, Platinum resistance Thermometer,	
		Thermocouple and Thermistors, Modes of Heat Transfer.	
3	Properties of Fluid:	Surface Tension, Surface Energy, Angle of Contact,	07
	Surface Tension &	Capillarity action, Determination of Surface tension by	
	Viscosity	capillary rise method, Jaeger"s method, Temperature	
		dependence of surface tension and its applications.	

<u>FUN DA I</u>	.CII (2017-10)		
	, ,	Viscosity, Coefficient of viscosity, streamline and turbulent	
		flow, Reynold"s number, Stoke"s law, Terminal velocity,	
		Determination of "η" by falling sphere method.	
4	Elasticity	Stress and Strain, Hook"s law, Stress-strain curve, Young"s	03

5	Solids and	Classification of Solids (Conductor, Semiconductor and	05
	Semiconductor	Insulators), intrinsic and extrinsic semiconductors, PN	
	Devices	Junction Diode, Zener Diode, Junction Transistors (CE,CB mode)	
6	Introduction to Digital	Introduction to Binary mathematics, BCD numbers, Basic	02
	Electronics	logic gates, De-Morgan"s Theorem	
7	Lasers	Properties of Lasers, Production mechanism, Ruby Laser,	03
		Helium Neon Laser, applications of Lasers.	
8	Sound waves	Types of sound waves (Longitudinal and Transverse),	03
		Audible, Ultrasonic and Infrasonic waves, Beats, Doppler	
		effect, Applications of Ultrasonic waves.	
9	Electricity	Heating effect of electric current, Joule"s law, Transformers,	02
		Types of Transformers.	
10	Modern Physics: X-	Introduction to X-Rays: Introduction, Production of X-rays,	07
	rays, Crystallography,	X-Ray diffraction and its Applications.	
	Introduction to	Introduction to crystal structure, Unit cell, seven crystal	
	Quantum Mechanics	systems.	
		Plank"s Quantum Theory, Properties of Photon, Photoelectric	
		effect, wave particle duality of radiation, de Broglie"s	
		hypothesis, Heisenberg"s Uncertainty principle.	
	•	Total Lectures	45

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

1) Physics-David Haliday and Robert Resnik (Vol I and Vol II) [Wiley Eastern Pub]

- 2) Perspectives of Modern Physics-Arthur Beiser [Mc Graw Hill]
- 3) Fundamensls of optics-Jenkins [Mc Graw Hill] Optics –Ajoy Ghatak [Tata Mc Graw Hill]
- 4) Digital Principles and Applications-Malvina and Leach [Mc Graw Hill]

PRACTICAL IN PHYSICS (TWO HOURS PER WEEK)

Marks 50

The course will also have a practical component. The practical training would be in the area of optics, electronics, thermometry, calorimetry, conductivity, measurement of physical properties as: viscosity and surface tension.

LIST OF EXPERIMENTS

- 1. Diffraction Grating: Use of diffraction grafting for determination of wavelength of spectral lining.
- 2. Resolving Power: To determine the resolving power of Microscope or telescope.
- 3. Diode Characteristics: Study of forward and reverse characteristics of Diode.

 Transistor Characteristics: Study of characteristics of Photocell.
- 4. Band gap of semiconductor: Study of input and output characteristics of a transistor and determination of band gap of a semiconductor.
- 5. Ultrasonic Interferometer: Determination of velocity of ultrasonic waves by ultrasonic
- 6. Study of logic gates (OR, AND, NOT).
- 7. Thermocouple: Study of variation of thermo emf (electromotive force) with temperature.
- 8. Surface Tension: Determination of the surface tension of a given solution.
- 11. Viscosity: Determination the coefficient of viscosity by Stoke"s method and its practical application.
- 12. Joule's Law: Determine of Joule's constant.
- 13. Determination of wavelength of monochromatic light by Newton's rings experiments.
- 14. Thermal Conductivity: Determination of coefficient of thermal conductivity of given specimen.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		10
Major test at the end of semester	3 hours	25
Total		50

TITLE OF THE COURSE: ORGANIC CHEMISTRY

COURSE CODE: BS 102 L T P Hr C
MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is:

To familiarize the students with basic concepts of organic chemistry.

To familiarize the students with structures of organic molecules as: alkanes, alkenes, alkynes, aliphatic and aromatic molecules

To introduce them to interactions amongst organic compounds

LEARNING OUTCOME:

At the end of this course student should be able to understand basic principles of organic chemistry and develop skills in handling organic molecules. This is essential for undertaking practical training in Biochemistry and genetic engineering at the later stage.

PREREQUISITES:

This is an introductory course. There are no prerequisites for the course.

Sr.	Topic	Description	Hrs
No			
1	Introduction to organic chemistry	Functional groups	2
2	Organic compounds	Chemistry of alkanes, alkenes, alkynes (Comparative study)	5
3	Stereochemistry	Stereo isomers, Enantiomers, Chiral centers/ Optical activity, Geometric isomers Meso- isomers, Conformational isomers	8
4	Chemistry of cyclic aliphatic carbons	Nomenclature and preparation, Reactions of small ring compounds, (cyclopropane and cyclobutane), Baeyers Strength Theory, Stereochemistry of Cyclic Aliphatic compounds	8
5	Chemistry of heterocyclic compounds	Furan, Pyrrole, Thiophene, Purines, Pyrmidines (Nucleic acids), Quinoline, Isoquinoline	8
6	Chemistry of aromatic compounds	Structure of Aromatic compounds (Benzene and its derivatives), Aromatic Characters: The Huckel rule (4N+2)	8
7	Reaction mechanisms	Nucleophilic SN ₁ , SN ₂ , Electrophilic E ₁ and E ₂)	5
Total N	Number of lectures		44

METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Organic Chemistry (6th Edition, 1992)- Robert Thornton Morrison and Robert Neilson Boyd (Prentice Hall)
- 2) Organic Chemistry Vol. I and II and III by I. L Finnar. 5th Edition Pearson Publications

PRACTICAL IN ORGANIC CHEMISTRY (4 Hrs. PER WEEK) MARKS 100 LIST OF EXPERIMENTS:

- 1. 10 Quantitative analysis, 5 organic and inorganic mixtures
- 2. Quantitative analysis:

Estimation of aniline, acetone, and aspirin

Molecular weight of monobasic/dibasic acids.

- 3. Preparation of orange dyestuff (Sagand III)
- 4. Preparation of p-nitroacetanilide from actanilide
- 5. Preparation of acetnilide from aniline
- 6. Preparation 2,4 DNP derivatives
- 7. Estimation of Cu²⁺ from brass
- 8. Estimation of %q of NH₄Cl+BaSO₄ grarimetric analysis
- 9. Preparation of Std. K₂Cr₂O₇ solution and estimation of Fe (II) and Fe(III) from a given mixture of Fe(II) and Fe(III) using external indicators.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		20
Major test at the end of semester	3 hours	50
Total		100

TITLE OF THE COURSE: MATHEMATICS

COURSE CODE: BS-103 L T P Hr C MARKS: 100 3 1 0 4 4

OBJECTIVE

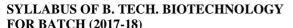
The objective of the course is to familiarize the student with basic concepts in mathematics.

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of different mathematics and statistical tools used in Biotechnology. This knowledge would be applicable in different industries

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the 10+2 level they should have cleared the core mathematics in the first semester.


Sr.	Topics	Lectures
No.		Required
1	Algebra:	02
	1.1 Logarithms	
	1.1.1 Definition of Logarithm (Natural and common logarithm	
	1.1.2 Laws of Logarithm.	
	1.2 Binomial Theorem:	04
	1.2.1 Definition of factorial notation, peronntation & combinations.	
	1.2.2 Binomial Theorem for positive index.	
	1.2.3 General term, middle term	
	1.2.4 Binomial theorem for any index	
	1.2.5 Binomial Theorem for Approximation.	
2	Trigonometry:	03
	2.1 Trigonometric Rations (t-ratios)	
	2.1.1 t-ratios of any angle, Relation between t-ratios, Fundamental identities.	
	2.1.2 Relation between degree & radian, T-ratios of std. angles.	
	2.1.3 Quadrants sign of T-ratios in various quadrants, T-ratios of negative angles.	
	2.2 T-ratios of Allied, Compound, Multiple and Submultiples angles.	08
	2.2.1 T-ratios of Allied angles.	
	2.2.2 T-ratios compound angles.	
	2.2.3 T-ratios of multiple & sub-multiple angles.	
	2.2.4 Factorization formulae	
	2.2.5 Defactorization formulae.	
	2.3 Inverse Trigonometric Functions.	02

SYLLABUS OF B. TECH. BIOTECHNOLOGY FOR BATCH (2017-18)

	2.3.1 Definition of Inverse t-functions.2.3.2 Principle value of inverse t-functions.	
3	Function and Limit	02
	3.1 Function:	
	3.1.1 Definitions of variable, constant, intervals such as open, closed, semi-open etc.	

	3.1.2 Definitions of function, value of function, domain & range of a function.	
	3.2 Limits :	06
	3.2.1 Concepts and definition of Limit.	
	3.2.2 Limits of algebraic functions.	
	3.2.3 Limits of trigonometric functions.	
	3.2.4 Limits of exponential functions.	
	3.2.5 Limits of logarithmic function.	
4	Derivatives	06
	4.1 Derivatives :	
	4.1.1 Definition of Derivatives, notations.	
	4.1.2 Rules of Derivatives (without proof)	
	4.1.3 Derivatives of composite functions.	
	4.1.4 Derivatives of Inverse trigonometric function by substitution method.	
	4.1.5 Derivatives of Implicit functions.	
	4.1.6 Logarithmic differentiation.	
	4.1.7 Second order differentiation.	
	4.2 Application of Derivatives	04
	4.2.1 Geometrical meaning of the derivatives.	
	4.2.2 Equations of Tangent & normal to the given curve.	
	4.2.3 Maxima & Minima.	
5	5.1. Integration :	03
	5.1.1 Definition of integration, Integration of Standard function; Rules of Integration.	
	5.1.2 Integration of rationale functions; Trigonometric functions to determine	
	constant of Integration,	
	5.2. Definite Integration:	02
	5.2.1 Definition of Definite integral, definite.	
	5.2.2 Definite integral with simple problems.	
	5.3. Application of Definite Integrals	02
	5.3.1 Area under the curves.	
	5.3.2 Area between two curves.	
6	Differential Equation (D.E.)	04
	6.1. Definition of D.E., order & degree of D.E., formation of D.E for function	
	containing single constant.	
	6.2 Solution of D.E. of first order & first degree such as:	
	i) Variable separable type.	
	ii) reducible to variable separable form	
	,	

1 OK Dill CII (2017-10)	
iv) Linear D.E	
v) Bernoulli"s D.E.	
Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Mathematics for Biological Science by Jagdish Arya & Ladner.1979. Prentice Hall
- 2) Numerical methods by E. Balguruswamy. 1999. Tata Mc Graw Hill Publications Pvt Ltd.
- 3) Higher Engineering Mathematics B. S. Grewal, Khana Publication, New Delhi. 2003
- 4) Applied Mathematics P. N. Wartikar, Pune Vidaypeeth, Griha Prakashan, Pune
- 5) Introductory Methods of Numerical analysis, S. S. Sastry, Prentice Hall of India, New Delhi.2005.

TITLE OF THE COURSE: INTRODUCTION TO ELECTRONICS AND

INSTRUMENTATION ENGINEERING

COURSE CODE: BT 101 L T P Hr C MARKS: 100 3 0 2 5 4

OBJECTIVE OF THE COURSE:

Objective of the course is to familiarize students with the basic concepts of electronic engineering and electronics engineering.

This knowledge would help them in applying them in various biological techniques. Also the Knowledge of this subject will form a profound base for the instrumentation used in various advanced courses of Biotechnology and Bioinformatics.

LEARNING OUTCOME

At the end of this course student should be able to understand the engineering electronics and instruments.

PREREQUISITES

Since the course is very basic in nature, knowledge of physics and mathematics is required

Sr.	Topic	Description	Hrs
No.			
	Electronics		•
1	Introduction to	History and Scope of	1
	Electronics	Electronics	
2	Electronic Signals	Characteristics of electrical Signals	2
3	Electronic devices	Input & output relations, Simple electronics devices: Resistors, Capacitors, Inductors, Bias voltage.	6
4	Electronic circuits	Simple circuits for amplification, power supplies and for wave shaping .Amplification: Concept of amplification, type of amplifiers, OP-Amp and its characteristics, simple applications (Adder, substracter, integrator, differentiator), and filters.	8
5	Digital electronics	Number systems, binary codes, Boolean algebra, arithmetic operations, logic functions, combinational and sequential logic, different OR, AND, NOR, NAND, EXOR gates, flip flops, registers and counters.	8
6	Microprocessor	Introduction to Microcomputer and Microprocessor and block diagram, CPU and ALU, Timing and control unit and Block diagrams instruction and data formats.	4
7	Interfacing peripherals and applications	A to D converters, DAC, Resolution, speed, types	4
	Instrumentation		

SYLLABUS OF B. TECH. BIOTECHNOLOGY

FOR BATCH (2017-18)

1	1 Introduction Introduction to instrumentation and definitions		1
2	Sensing elements	Types of sensors, electrodes and transducers	1
3	Electrodes:	Electrolyte interface, Sensing elements, Detectors, Signal conducting circuits, circuit models, suitability of electrode	4

		potentials, circuit models, external and internal electrodes, pH, pO2 and pcO2 electrodes, connectivity.	
4	Transducers	Definitions, types, displacement pressure, temperature, vibration, ultrasound etc, calibration, sensitivity and resolution, Flow transducers & Rota meter, venturi, orifice Plate	6
	Total Number of Lectures		45

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Digital Electronics by R. K. Jain Jain, Tata Mc Graw Hill, 3rd Edition, 2003.
- 2. Grob"s Basic Electronics Mitchel E. Schultz.., Tata McGraw Hill, 10th Edition 2006.
- 3. Principals of electronics By V. K. Mehta , S. Chand Publisher , 1st Edition , 2010.
- 4. Op Amps and linear integrated circuits By Ramakant Gaikwad, McGraw –Hill publishing company limited, 4th Edition, 2002.
- 5. Integrated Electronics By Millman and Halkias. Mcgraw-Hill, 3rd Edition 1972.
- 6. The Z 80 Microprocessor By Ramesh Gaonkar, Penram Publisher, 3rd Edition, 1988.
- 7. A course in electrical and electronic measurements and instrumentation by A. K. Sawhney, Puneet Sawhney, Rai publisher, 1996.

PRACTICALS IN BASIC CONCEPTS IN ELECTRONICS AND INSTRUMENTATION ENGINEERING (2 Hrs. PER WEEK) MARKS 50

Sr. No.	Name of the Practical	Time (Hrs.)
1.	Study of diode characteristics	4

DY. PATIL VIDYAPEETH, PUNE

<u>JK DATCII</u>	\ 2 017 10)	
2.	Study of operational Amplification 741 i) Inverting Amplifier ii) Non	4
	inverting amplifier	
3.	Study of operational Amplification 741 i) Inverting Amplifier ii) Non	4
	inverting amplifier	
4.	Study of Ph meter circuits & working	4
5.	Study of Ph electrodes & role of electrolytes	4
6.	Study of Conductivity meter, circuits & working	4
7.	Study of Conductivity meter electrodes & functions	4
8.	Pressure development & vibration DVPT	4

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
Major test at the end of semester	2.5 hours	30
Total		50

TITLE OF THE COURSE: INTRODUCTION TO COMPUTERS AND COMPUTER

ORGANIZATION

COURSE CODE: BI 101 L T P Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is

To familiarize the students with computers and programming concepts.

To introduce basic concepts in: hardware, software and its implementation.

To introduce concepts of Networking, World Wide Web (Internet), Telnet, FTP, Etc.

Programming module is intended to familiarize them with computer logic and solution of real world problems using computers.

LEARNING OUTCOME

At the end of this course student would be able to understand basic principles of Computing, Networking and Programming.

PREREQUISITES

The course is of introductory nature and there are no prerequisites for the course.

Sr. No.	Topic	Description	Hrs
1	Basic Organization of Computers	Introduction to Computer, historical background, Block diagram of a Computer, parts of Computer, their integration and function .	3
2	Hardware	Computer hardware, different types of I/O devices, motherboard, BIOS, Primary and Secondary Memory, different types of Printers, Storage Media, their sizes and use. Computer booting, loading operating system (OS) and execution. execution cycle (fetch and execute)	5
3	Software	Introduction to software, Application software (Packaged & Customized) and System Software (OS & Utilities). Complier & Interpreter, software loading and execution, Task management by OS for Application Software.	4
4	Types of Computer	Difference between Super Computer, Mini Computer and a Micro Computer and their applications.	2
5	Data representation in Computers	Introduction to Binary, Octal and Hexadecimal Number System	2
6	Binary Arithmetic	Basic Binary Arithmetic i.e. Addition, Subtraction,	4

FOR BATCH (2017-18)

		Multiplication, Division, Compliments, Subtraction by means of 2"s Compliment, Logical operations on Binary (AND, OR, NOT)	
7	Transforming Data into	Distinction between data and information their	1
	Information	represented in computers.	
8	Operating System &	OS, tasks performed by OS, Introduction to DOS,	2
	Interface	Windows and Linux/UNIX	
9	Networking Fundamentals	Computer networks (n/w), various terms associated with	5
		networks, topologies for n/w, different mediums,	
		hardware and technologies associated with n/w, n/w	
		protocols, introduction OSI layers, TCP/IP stack,	
		services provided by TCP, IP Addressing	
10	Client Server Architecture	Introduction to client, server, client-server architecture	1
11	LAN/WAN/MAN/CAN	Introduction to LAN/WAN/MAN and CAN, and their	2
		use. Different technologies used to implement them.	
12	Telnet, FTP	History and use of Telnet based on UNIX terminals.	3
		FTP and its use. TFTP. Case study how to setup Telnet	

and FTP servers on LINUX

Basic HTML tags

Total Number of Lectures

Internet, DNS and name resolution. History of Internet. IP Addressing scheme and its relation to the Internet.

Data types, Decision control, Loop control, Case

control, Functions, Arrays and Strings

METHODOLOGY

13

14

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Internet, WWW, HTML

Introduction to C and

Programming in high

level language

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Introduction to Computers by Norton
- 2) Fundamentals of Computers by Raja Raman
- 3) Computers Fundamentals by Sinha

8

46

4) Introduction to Computers by Subramanian.

TITLE OF THE COURSE: COMMUNICATION SKILLS

COURSE CODE: HU-101 L T P Hr C MARKS: 100 1 2 0 0 0

OBJECTIVE:

The objective of this course is:

To develop communication skills amongst students,

To familiarize students with communication elements,

To acquaint them with the Scientific reading, Writing & Presentation skills.

To familiarize students with concepts in plagiarism.

LEARNING OUTCOME:

At the end of the course, the students will be able to use different forms of communication, produce good document in science and avoid plagiarism of any form.

PREREQUISITES:

This is an introductory course and there are no prerequisites.

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Introduction to	Elements, definitions, scope of communication and	02
	communication	communication as part of science	
2	Communication	Verbal and nonverbal communications.	02
	elements	Principles of effective communication, Oral presentations,	
		Barriers to communications, Use of good English:	
		Introduction to English Grammar: parts of speech, use of	
		articles & prepositions, use of correct tense, spellings etc.	
3	Scientific reading,	Introduction to scientific reports and writings?	08
	writing & presentation	Compilation of experimental data, Communication methods	
		in science, Use of good English in science, Examples of	
		Scientific and Unscientific writing.	
		Process of Scientific writing: thinking, planning, rough drafts	
		and revising context.	
		Different styles of scientific writing APA, MLA or Chicago.	
		Writing papers, reviews and Bibliography	
4	Plagiarism	Introduction to Plagiarism	04
		Examples of Plagiarism	

Total Lectures 16

METHODOLOGY

The course will be covered through lectures supported by tutorials. During tutorials, students would be made to present scientific and nonscientific data/information using different communication skills. They would be corrected as and when needed and taught how to improve their skills in reading, writing and data presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Technical Writing and Professional Communication- Thomas Huckin and Lesle Oleson London William Collins and Sons.
- 2) Business English and Communication- By Lyn Clark and Zimmer. New York Mcgraw Hill.
- 3) Developing Communications-Mohan K

SYLLABUS OF B. TECH. BIOTECHNOLOGY

Dr. D.Y. PATIL VIDYAPEETH, PUNE

TITLE OF THE COURSE: DISASTER MANAGEMENT

COURSE CODE: HU-101 L T P Hr C MARKS: 100 2 0 0 2 2

LEARNING OBJECTIVE:

To provide student an exposure to disasters, their significance and types.

To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction

To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)

To enhance awareness of institutional process in the country and

To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

COURSE DESCRIPTION:

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Introduction to Disasters	Concepts and definitions (Disaster, Hazard, Vulnerability, Resilience, Risks)	04
2	Disasters: Clarification, Causes, Impacts (Including social, economic, political, environmental, health, psychosocial, etc.)	Differential impacts – in terms of caste, class, gender, age, location, disability, Global trends in disasters urban disasters, pandemics, complex emergencies, Climate Change	08
3	Approaches to Disasters Risk reduction	Phases, Culture of safety, prevention, mitigation and preparedness, community based DRR, Structural — nonstructural measures, roles and responsibilities of community, Panchayati Raj Institution / Urban Local Bodies (PRIs/ULBs), states, centre and other Satke-holders	08
4	Inter-relationship between Disasters and Development	Factor affecting Vulnerabilities, differential impacts, impact of Development project such as dams, embankments, changes in Land-ude etc. Climate Change Adaptation. Relevance of indigenous knowledge, appropriate technology and local resources	04
5	Disaster Risk in India	Hazard and Vulnerability profile of India Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional Arrangements (Mitigation, Response and Preparedness, DM Act and Policy, Other related policies, Plans, programmes and legislation)	06
6	Project Work	Field Work, Case Studies	06
	1	Total Lectures	36

METHODOLOGY

The course will be covered through lectures& classroom discussion.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Alexander David, Introduction in "Confronting Catastrophe", Oxford University Press, 2000.
- 2. Andharia J. Vulnerability in Disaster Discourse, JTCDM, Tata Institute of Social Science working Paper no. 8, 2008
- 3. Blaikie, P, Cannon T, Davis I, Wisner B 1997, At Risk Natural Hazards, Peoples, Vulnerability and Disasters, Rutledge.
- 4. Coppola P Damon, 2007, Introduction to International Disaster Management,
- 5. Carter, Nick 1991, Disaster Management : A Disaster Manager"s Handbook, Asian Development Bank, Manila Philippines.
- 6. Cuny, F.1983, Development and Disasters, Oxford University Press
- 7. Document on World Summit on Sustainable Development 2012
- 8. Govt. of India: Disasters Management Act 2005. Government of India, New Delhi
- 9. Government of India, 2009, National Disasters Management Policy.
- 10. Gupta Anil K, Sreeja S. Nair, 2011, Environmental Knowledge for Disasters Risk Management, NIDM, New Delhi
- 11. Indian Journal of Social Work 2002, Special Issue on Psychosocial Aspects of Disasters, Vol. 63, Issue 2, April
- 12. Kapur, Any & Other 2005: Disasters in India Studies of Grim reality, Rawat Publishers, Jaipur

SEMESTER II

Course Code	Course Name	L	T	P	Hr	Cr	Marks
BS 201	Physical Chemistry	3	1	0	4	4	100
BS 202	Introduction to Bio-molecules	3	0	4	7	5	200
BS 203	Biostatistics	3	1	0	4	4	100
BT 201	Engineering Mechanics	3	0	2	5	4	150
BI 201	C Programming	3	0	4	7	5	200
BS 204	Environmental Sciences	3	0	2	5	4	150
	Total	18	2	12	32	26	900

TITLE OF THE COURSE: PHYSICAL CHEMISTRY

COURSE CODE: BS-201 L T P Hr C 3 1 0 4 4

OBJECTIVE

The objective of this course is to familiarize the student with the concepts and physical principles involved in Biotechnology.

They would learn topics such as: Basic concepts and principles of Osmosis, Dialysis, Viscosity, Colloids, Phase rule, Acid-bases, Photochemistry etc.

They would be made to understand the nature of Chemical Bonding, Atomic orbitals and Bioenergetics its relevance in stabilization of the molecules.

They would also learn Basic principles of radioactive isotopes.

LEARNING OUTCOME

At the end of the course, the students will be able to use different Biophysical techniques and principles used in Biotechnology.

PREREQUISITES

This is the first introductory course and there are no prerequisites.

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Basic	1. Osmosis- Diffusion, Osmotic Pressure, Theories of Osmosis.	2
	concepts	2. Dialysis-Introduction, Technique, reverse dialysis, Glass fiber dialysis.	
	and	3. Viscosity –Introduction & Types of viscometer.	2
	principles	4. Colloids-Lyophilic & Lyophobic sols, Optical properties, Electrical	2
		properties of sols, Gold number. Donnan Equilibrium.	3
		5. Phase rule-Phase, Components & Degree of freedom .Derivation of	3
		Phase rule. Phase diagram. Water system.	5
		6. Acid-bases- Three concepts of acids & bases, P ^H meter & types of electrodes ,Buffer solution, Acid base indicator , Law of mass action, Numerical.	3
		7. Photochemistry –Photochemical reactions, Light absorption, Laws of	
		photochemistry, Photo physical processes, Einstein equation.	
2	Chemical bonds and	1. Chemical Bonding- Different types of bonds & bond characteristics Ionic Bond, Covalent bond, coordinate covalent bond, Metallic bond.	3
	their roles in	2. Atomic orbital "s-Atomic orbital theory, Hybrid orbital "s (sp, sp2, sp3),	
	stabilizing	molecular orbital theory.	3
	the bio-	3. Bioenergetics- First & Second laws of Thermodynamics, Internal	
	molecules	energy, Enthalpy, Entropy, concept of free energy, Standard free energy	
		change of a chemical reaction, ATP & high energy phosphates	7
		compounds.	
		Chemical equilibrium constant, Nernst equation.	

SYLLABUS OF B. TECH. BIOTECHNOLOGY

FOR BATCH (2017-18)

3	Basic	1. Isotopes in Biology- Properties, Half-life, Radioactive decay, production of isotopes, synthesis of labeled compounds, Interaction of	4
	radioactive	radioactivity with matter	
	isotopes		
		2. Measurement of radioactivity-Methods based on Gas ionization	
		(Ionization chamber, Proportional counter, Geiger counter), Photographic	6
		methods, Methods based on Excitation (Liquid & solid Scintillation	3
		counting), Quenching.	
		3. Tracer technique-Advantages & limitations, Labeling procedures.	2
		4. Use of Isotopes-Tritium, Carbon-13, Nitrogen-15,Oxygen -18,Carbon-	
		14,	
		Sodium-24, Phosphorus-32, Sulphur-35.	
		Total lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials, students would be made to analyze data related to different Biophysical techniques. They would be also made to compute molecular properties based on bonds.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Physical Chemistry by Atkins Peter and Paula Julio De 7th ed.2010 Oxford University Press New Delhi.
- 2) Principles of Physical Chemistry by David Frifelder. Jones & Bartlett Publishers; 2nd Sub edition (1984).
- 3) Essentials of Physical Chemistry B.S. Bahl & Arun Tuli. S Chand & Co. 2000. Biophysical Chemistry by Avinash Upadhyay, Kakoli Upadhyay & Niamalendu Nath. Himalayan Publishing House. 2005.

COURSE NAME: INTRODUCTION TO BIO MOLECULES

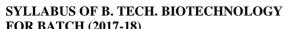
COURSE CODE: BS 202 L T P Hr Cr MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the basic concepts regarding chemical structure (2D-structure), three dimensional (3-D) structures and functions of Biomolecules: carbohydrates, lipids, proteins and nucleic acids.

This knowledge would enable them to understand structure function relationship.

Knowledge of this subject will form a profound base of forthcoming subjects like metabolism, Enzymology, molecular biology etc.


LEARNING OUTCOME

At the end of this course student should be able to understand structural features of Biomolecules and their relationship to their interactions.

PREREQUISITES

Since the course is very basic in nature there are no prerequisites.

Sr. No.	Topic	Description	Hrs
1	Introduction to bio- molecules	Functional groups, 3D (three dimensional) structure, geometric and stereo-specificity.	4
2	Carbohydrates	Classification and stereochemistry, Structural properties, functional importance of storage and transport of structural polysaccharides: sucrose, starch, glycogen, cellulose, pectin, hemicelluloses, chitin, muco-polysaccharides etc., Biosynthesis and role of N-linked and O-linked glycoproteins and proteoglycans.	6
3	Lipids	Structure, classification and properties of lipids, Lipid assembly, model membranes, formation of liposomes and drug targeting	5
4	Vitamins and Growth factors	Classification, role, estimation deficiency and diseases	4
5	Proteins	Amino acids: classification, structure and properties, Structural features of Proteins: Primary, secondary, tertiary and quaternary structure, Motives and domains. Structural stabilization of proteins Protein function.	15
6	Nucleic Acids	Nitrogen bases: nucleosides and nucleotides. Historical basis of DNA structure Fibre X-ray diffraction and single crystal X-ray diffraction study	10

Dr. D.Y. PATIL VIDYAPEETH, PUNE

FUK BAI	CH (2017-18)		
		on DNA	
		A,B & Z form of DNA	

		Local distortion in DNA structure	
		Structure of Nucleozome	
		Structure of RNA	
		Properties of nucleic acids	
Total n	umber of lectures		48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Text Book of Biochemistry by Nelson and Cox
- 2) Biochemistry By Lubert Stryer Edn 3rd, 4th, and 5th.
- 3) Biochemistry by Mathews.
- 4) Nucleic acid structure by W. Sanger
- 5) Protein structure by Schulz
- 6) Protein Structure, Function & Architecture, Brandon & Tooze

PRACTICAL IN INTRODUCTION TO BIO-MOLECULES (4 Hrs. per week) Marks 100

LIST OF PRACTICALS

- 1) Preparation of buffer solution.& demonstration of buffering action.
- 2) Determination of λ max & verification of Beer-Lambert's law; Determination of molar extinction co-efficient.
- 3) Preparation & standardization of laboratory reagents.
- 4) Qualitative detection of carbohydrates (Molish test, Benedicts test, Fehling"s test, lead acetate test, inversion test, Seliwanoff"s test, Osazone test).
- 5) Titration curve of Glycine.
- 6) Qualitative detection of Lipids (solubility test, Acroline test (for glycerol), and test for cholesterol
- 7) Quantitative detection of Proteins
- 8) Introduction to molecular Graphics software RasMol
- 9) Understanding Protein Structure using RasMol
- 10) Understanding DNA structure using RasMol

EVALUATION SCHEME PRACTICAL TRAINING

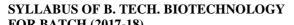
Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		20
Major test at the end of semester	3 hours	50
Total		100

TITLE OF THE COURSE: BIOSTATISTICS

COURSE CODE: BS-203 L T P Hr C MARKS: 100 3 1 0 4 4

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics & statistics.


LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of different mathematics and statistical tools used in Biotechnology. This knowledge would be applicable in different industries

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

Sr.	Topics	Lectures
No.		Required
1	Determinant & Matrices :	04
	1.2 Determinant	
	1.2.1 Definition & expansion of determinant of order 2 and 3	
	1.2.2 Cramer's rule to solve simultaneous equations in 2 and 3 unknowns.	
	1.2 Matrices:	10
	1.2.1 Definition of Matrix of order mxn and types of Matrices.	
	1.2.2 Algebra of Matrices.	
	1.2.3 Transpose of a Matrix	
	1.2.4 Minor & cofactor of an element of a matrix	
	1.2.5 Adjoin of a Matrix.	
	1.2.6 Inverse of a Matrix by adjoin method	
	1.2.7Solution of simultaneous equations containing 2 and 2 unknowns by Matrix	
	inversion method.	
2	Complex Number:	04
	2.1 Definition of Complex number, Cartesian, polar, exponential forms of	
	complex number.	
	2.2 Algebra of Complex Number	
	2.3 De - Moiyre"s theorem (without proof) and simple problems.	
	2.4 Euler"s form of circular functions, Hyperbolic functions and relations	
	between circular hyperbolic functions.	
3	3.1 Numerical Solution of Algebraic Equations :	06
	3.1.1 Bisection Method	
	3.1.2 Regula – Falsi Method	
	3.1.3 Newton-Rophson Method	
	3.2 Numerical Solution of Simultaneous Equations :	04
	3.2.1 Gauss elimination method.	
	3.2.2 Iterative Methods Gauss Seidal and Jacobi"s Method.	
	3.3 Numerical Methods :	02

TUK D	A I C ((((((((((((((((((
	3.3.1 Solution of Linear & Non-Linear equation by	
	i) Trapezoidal Rule ii) Simpson"s Rule	
4	Set Theory and Probability	04
	4.1 Set Theory	

	4.2 Probability:	
	4.2.1 Definition of random experiments, sample space, events, occurrence of	
	event and types of events.	
	4.2.2 Definition of probability, addition and multiplication theorem of	
	probability.	
	4.3 Probability Distribution	04
	4.3.1 Binominal Distribution.	
	4.3.2 Poisson"s Distribution.	
	4.3.3 Normal Distribution.	
5	Statistics	
	5.1 Frequency Distribution :	01
	5.2 Measures of Control tendency (For Raw, Ungroup & group Data)	04
	5.2.1 Mean	
	5.2.2 Median	
	5.2.3 Mode	
	5.3 Measures of Dispersion	01
	5.3.1 Rauge, Variance, Coefficient of Cariance.	
	5.3.2 Standard Derivation.	
6	Correlation & Regression	
	6.1 Correlation	01
	6.2 Regression	01
7	Chi square Test for independent attribute in RXC Table (Special case of 2x2	01
	Table	
8	F-Test	01
	Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

BOOKS RECOMMENDED:

- 1) Fundamentals of Statistic by S. G. Gupta. 17th Ed. Himalaya Publications 2000
- 2) Statistical Method in Biology by Bailey IIIrd Ed. University of Cambridge Press 1995.
- 3) Statistics from biologist by Campbell R.C. Ed. 3. Cambridge University Press 1989
- 4) Fundamentals of Mathematical Statistics S. C. Gupta and Kapoor, S. C. Hand publication, New Delhi .1987.

NAME OF THE COURSE: ENGINEERINGMECHANICS

COURSE CODE: BT 201 L T P Hr C
MARKS: 150 3 0 2 5 4

OBJECTIVES:

The objective of the course is to familiarize the students with the basic concepts of engineering mechanics.

LEARNING OUTCOME:

At the end of the course the students will have sufficient knowledge of mechanical engineering techniques which will help them to implement them in the life sciences.

PREREQUISITES:

Since the course is technical in nature the students must have the basic knowledge of Math sans Physics.

Sr.	Topic	Description	Hrs
No.			
1	Basics of mechanics	Introduction, Units and Dimensions	5
		Laws of Mechanics	
		Vectors – Victorian representation of forces and moments, Vector operations.	
2	Statics of particles	Coplanar Forces, Resolution and Composition of forces	8
		Equilibrium of a particle, Forces in space	
		Equilibrium of a particle in space, Equivalent systems of forces	
		Principle of transmissibility, Single equivalent force.	
3	Equilibrium of rigid	Free body diagram	8
	bodies	Types of supports and their reactions	
		Requirements of stable equilibrium,	
		Equilibrium of rigid bodies in two dimensions,	
		Equilibrium of rigid bodies in three dimensions.	
4	Properties of surfaces and	Determination of Areas and Volumes	7
	solids	First moment of area and the centroid second and product	
		moments of plane area	
		Parallel axis theorems and perpendicular axis theorems	
		Polar moment of inertia	
		Principal moments of inertia of plane areas	
		Principal axes of inertia	
		Mass moment of inertia & relation to area moments of inertia.	
5	Friction	Frictional Force	5
		Laws of Coloumb friction	

FOR BATCH (2017-18)

		Simple Contact friction	
		Rolling Resistance & Belt Friction	
6	Dynamics of particles	Displacement,	8
		Velocity, acceleration & their relationship	
		Relative motion	
		Curvilinear motion	
		Newton's Law of Motion	
		Work Energy Equation of particles.	
		Impulse and Momentum	
		Impact of elastic bodies	
	Total Lectures		42

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

BOOKS RECOMMENDED:

- 1. Beer and Johnson, "Vector Mechanics for Engineers", Vol. 1 " Statics "and "Dynamics", Vol. 2. McGraw Hill International Edition, 1995.
- 2. Merriam, "Engineering Mechanics", Vol.1 "Statics" and Vol.2 "Dynamics" 2nd Edition, Wiley International, 1988.
- 3. Rajasekaran S. and Sankara Subramanian, G., Engineering Mechanics Statics and Dynamics . Sangam Books Ltd., 1999.
- 4. Irving, H., Shames, "Engineering Mechanics Statics and Dynamics", 3rd Edition, Prentice-Hall of India Pvt.Ltd., 1993.
- 5. Timoshenko and Young, "Engineering Mechanics", 4th Edition, McGraw Hill, 1995.
- 6. M cLean, "Engineering Mechanics" ", 3rd Edition, SCHAUM Series, 1995.
- 7. Mokashi, V.S., "Engineering Mechanics", Vol.1 "Statics" and Vol.2"Dynamics", Tata McGraw Hill Books, 1996.

PRACTICALS IN ENGINEERING MECHANICS

(2 Hrs. Per Week)

50 Marks

LIST OF EXPERIMENTS:

Sr.	Name of the practical	Time (Hrs)
No.		
1.	Polygon law of coplanar forces.	4
2.	Non concurrent non parallel (general)	4
3.	Bell crank lever	4
4.	Support reaction for beam	4
5.	Simple / compound pendulum	4
6.	Inclined plane (to determine coefficient of friction)	4
7.	Collision of elastic bodies (Law of conservation of momentum)	4
8.	Moment of inertia of fly wheel	4
9.	Screw friction by using screw jack.	4

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
Major test at the end of semester	3 hours	30
Total		100

NAME OF THE COURSE: C PROGRAMMING

COURSE CODE: BI 201 L T P Hr C
MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with programming concepts and apply these concepts to the real world problems.

LEARNING OUTCOME

At the end of this course student should be able to understand how Programming in C Language is done.

PREREQUISITES

Students should have obtained at least 50% marks in the course: Introduction to computers and programming concepts.

Sr. No.	Topic	Description	Hrs
1	Introduction to C	An overview of C	2
		C expressions	
		Operators	
2	Data types:	Integers long and short	2
		Integers, signed and unsigned	
		Chars, signed and unsigned	
		Floats and doubles	
3	The Decision	The "if" statements within if	4
	controls in C:	Multiple statements within <i>if</i>	
		The "if-else' statement	
		The ! operator	
		Hierarchy of Logical Operators	
		The Conditional Operators	
4	Loop control	Loops, The "While' Loop, The "for' loop	5
	structures:	Nesting of Loops	
		Multiple Initializations in the for loop	
		The "Odd' Loop, The "break' statement	
		The "continue" statement, The "do-while" statement	
5	Case control	Decisions using switch	1
	structures:	The goto statement	
6	. Functions	What is a function? Why Use Functions	7
		Passing values between functions, Scope of functions	
		Single-dimension Arrays, Generating a Pointer to an	
7	Array & strings:	array, Passing	6
		single-dimension arrays to functions	
		Strings	
		Two-dimensional Arrays, Arrays of Strings	
		Multidimensional Arrays, Array Initialization	
		Variable-Length arrays	
8	Puppeting on	What are Strings?	4
	strings:	More about Strings	

FOR BATCH (2017-18)

Pointers and Strings Standard Library String functions Two-Dimensional Array of Characters	
Array of pointers to Strings	

		Limitations of Array of Pointers to String	
9	Pointers:	What are pointers?	6
		Pointer variables	
		The pointer Operators	
		Pointer Expressions	
		Pointers and Arrays	
		Initializing Pointers	
		Pointers to Functions	
		C"s Dynamic Allocation Arrays	
		Problems with Pointers	
10	I/O in C:	Types of I/O	4
		Console I/O Functions	
		Disk I/O functions	
		I/O under windows.	
11	Structures,	Structures	4
	Union,	Arrays of structures	
	Enumeration &	Passing structures to functions	
	type definition:	Structure Pointers	
		Unions	
		Bit-Fields	
		Enumerations	
		Typedef	
Total number of lectures			45

METHODOLOGY

The course would be taught through lectures, practical assignments by giving biological problems, quizzes, programming competition and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

- RECOMMENDED BOOKS

 1) The complete reference of C 4th edition by Herbert Schildt
 2) Let us C By Yashwant Kanitakar
 3) C- programming by Balaguruswamy

 - 4) Data Structure by Kanitakar
 - 5) Pointers in C by Kanitakar
 - 6) Data Structure C and C++ by Taneumbam.
 - 7) C programming by Keinighan and Ritchite

PRACTICAL IN C PROGRAMMING (4 Hrs. Per Week)

MARKS 100

LIST OF PRACTICALS

- 1. 8 programs in basic programming in C
- 2. 8 programs using Decision Controls in C
- 3. 8 programs using Loop and Case Control structure
- 4. 8 programs illustrating use of function
- 5. 10 programs illustrating use of arrays and Structure
- 6. 5 programs using Pointers
- 7. 10 programs for Biological application
 - Finding complement of DNA
 - ORF finding
 - Inverted Repeats
 - Motif finding
 - Translation
 - Transcription etc.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks	
Minor test 1	1 hour	30	
Continuous Assessment		10	
Major test at the end of semester	3 hours	60	
Total		100	

COURSE CODE: BS 204

COURSE NAME: ENVIRONMENTAL SCIENCE L T P Hr Cr MARKS: 150 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the problems related to environmental pollution, loss of natural resources, climate change, solid waste disposal, biodiversity and social issues due to environmental degradation. It is also important for them to develop clear understanding of biodiversity and its conservation.

LEARNING OUTCOME

At the end of this course student should be able to understand importance and need of sustainable development.

PREREQUISITES

Since the course is very basic in nature there are no prerequisites.

Seq. No	Topic	Description	Hrs
1	Natural Resources and associated problems	Land, water, food, forest, mineral and energy resources, their use, over-exploitation and conservation.	
2	Ecosystems	Concept, structure and function of ecosystem. Producers, Consumers and decomposers, Energy flow in ecosystem. Ecological succession and pyramids, Food chains, food webs and ecological pyramids. Characteristic features of Forest, Grassland, Desert and Aquatic Ecosystems.	6
3	Environmental Pollution	Definition, Causes, Effects and control measures of Air, Water, Soil, Noise, thermal and Marine Pollution. Nuclear hazards and Solid waste management. Role of an individual in prevention of Pollution and Pollution case studies	8
4	Biodiversity and its Conservation	Genetic, species and ecosystem diversity. Value of Biodiversity: social, ethical, aesthetic and option values. India as a mega diversity nation. Hotspots of Biodiversity. Threats to Biodiversity: Habitat loss, poaching of wildlife, man wild life conflicts. Endangered and Endemic species of India. Conservation of Biodiversity: in situ and ex situ conservation of biodiversity	8
5	Social Issues and the Environment	Urban problems related to energy. Water conservation, Rain water harvesting, and watershed management. Resettlement and rehabilitation of people. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation: Case studies. Environment protection	7

SYLLABUS OF B. TECH. BIOTECHNOLOGY

FOR BATCH (2017-18)

		Acts: Air (Prevention and control of Pollution) Act.	
		Water	
		(Prevention and control of Pollution) Act. Wildlife	
		protection	
		Act. Forest Conservation Act. Issues involved in	
		enforcement of	
		environmental legislation. Environmental ethics: Issues	
		and	
		possible solutions. Public awareness	
		Population growth. Population explosion- family	
6	Human Population	welfare	6
		programs. Environment and Human Health. Human	
	and Environment	Rights.	
		HIV/ AIDS and Women and Child welfare. Role of	
		Information	
		and Technology in environment & human health.	
7	Field work	Visit to a local area to document environmental assets	5
		River/forest/grassland/hill/mountain	
		Visit to local polluted site-	
		Urban/Rural/Industrial/Agricultural	
		Study of Common plants, insects, birds.	
		Study of simple ecosystems- pond, river, hill slopes, etc	
		Total number of lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and field work. The students will undertake field trip to sensitive hot spots in Western Ghats to observe and collect samples of Flora and Fauna for on the spot studies, collection and identification of specimens. These would be evaluated on the basis of report presented by the students

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60

- 1) Agarwal, K.. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2) Bharucha Erach, The Biodiverstiy of India, Mapin Publishing Pvt. Ltd. Ahmedabad- 380013, India,
- 3) Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc.480p Cark R.S., Marine Pollution, Clanderson press Oxford (TB)
- 4) Cunnigham, W.P.Cooper, T.H. Gorhani, E & Hepworth M.T. 2001

Teaching hours per week and credits for practicals only: 2 Hr 1 Cr Marks for Practicals: $50\,$

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	To study physicochemical properties of soil (pH, conductivity, moisture content, carbonate content, salinity, porosity)	To know about variations of soil properties and to determine their suitability for a particular purpose	Bandyopadhyay PC. Soil Analysis, Gene-Tech books, New Delhi, India. 2007.
2.	Identification and enumeration of zooplanktons and phytoplanktons as indicator of water pollution	To differentiate polluted and non-polluted sites based on plankton data	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
3.	To identify and characterize normal microflora in air, water and soil	To know presence of normal microflora within environment.	Cappuccino JG & Sherman N. Microbiology, A laboratory Manual, 10 th ed. Dorling Kindersley, Pearson Benjamin Cummings, 2014.
4.	Determination of MPN from water samples	Determine potability of water	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
5.	Estimation of chlorine in drinking water using colorimetric method	Understanding of residual amount of chlorine in water as a health hazard	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
6.	humidity of the atmosphere	To understand relationship between weather and humidity	Mudakavi JR. Principles and Practices of air pollution analysis. I K International Publishing House Pvt. Ltd., New Delhi, India, 2010.
7.	Estimation of dissolved oxygen in the given water sample	To understand importance of BOD and COD	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 rd ed. CRC Press, United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
8.	Study the effects of pollutants (e.g., heavy metals) on flora	To understand effect about pollution	Leo ML, Nollet, Leen SP, De Gelder. Handbook of Water Analysis, 3 ^{ru} ed. CRC Press,

			United Kingdom, Publisher: Leen S. P. De Gelder, 2013.
9.	Determination of NO ₂ from	To understand more	Mudakavi JR. Principles and

FOR BATCH (2017-18)

	the atmosphere by Colorimetric method using high volume sampler (Optional)	about atmospheric condition	Practices of air pollution analysis. I K International Publishing House Pvt. Ltd., New Delhi, India, 2010.
10.	Determination of K ₂ O value of soil by flame photometer (Optional)	To understand about Quality of soil	Bandyopadhyay PC. Soil Analysis, Gene-Tech books, New Delhi, India. 2007.

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks)

Journal writing: 5 marks

SEMESTER III

Course Code	Course Name	L	Т	P	Hr	Cr	Marks
BS 301	Analytical Techniques	3	0	4	7	5	200
BS 302	Cell Biology	3	0	2	5	4	150
BS 303	Microbiology	3	0	4	7	5	200
BS 304	Genetics	3	1	2	6	5	150
BS 305	Mammalian Physiology	3	1	0	4	4	100
BT 301	Plant Physiology	3	1	0	4	4	100
	Total	18	3	12	33	27	900

TITLE OF THE COURSE: ANALYTICAL TECHNIQUES

COURSE CODE: BS-301 L T P Hr C
MARKS: 100 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to create general understanding of microscopy, electrophoresis, X-ray crystallography, Infra-red spectroscopy, Ultra-violet spectroscopy, nuclear magnetic resonance spectroscopy, mass spectroscopy, CD & ORD spectroscopy. They would also understand the importance of analytical tools in biotechnology & its applications in various industries

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the basic concepts in instrumentation used in Biotechnology. This is essential because he would be using these techniques in forth coming semesters.

PREREQUISITES:

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Centrifugation	Introduction: Basic principles of sedimentation	03
		Types of centrifuges	
		Design of centrifuges: Types of rotors	
		Ultracentrifuge: Analytical and Preparatory	
2	Colorimetry and	Properties of electromagnetic radiations, interaction with	02
	Spectroscopy	matter.	
		Ultraviolet spectroscopy: Origin of UV spectra, types of	
		transition, chromophore & related terms, effect of conjugation,	04
		choice of solvent, instrumentation and applications	
		Infra-red spectroscopy: Origin of infra-red spectra, modes of	04
		vibrations, instrumentation, sampling technique and	
		applications	
		Nuclear magnetic resonance spectroscopy: Origin of NMR,	06
		continuous wave spectrometer, chemical shifts, spin-spin	
		coupling, Karplus equation & curve, anisotropic effect,	
		compounds containing C ¹³ , P ³¹ & F ¹⁹ , applications of NMR.	06
		Mass Spectroscopy: Origin, Instrumentation, types of ions	
		produced, interpretation and applications of mass spectra	
		GCMS, LCMS & MSMS	
3	Chromatography	Introduction: Chromatography theory and practice.	09
		Paper chromatography.	
		Thin layer chromatography.	

FOR B	ATCH (2017-18)		(DEEMED UNIVERSITY)
		Ion exchange chromatography.	
		Affinity chromatography.	
		Partition chromatography.	

		Adsorption chromatography.	
		Introduction to gas chromatography and HPLC.	
		Permeation.	
4	Electrophoresis	General principle, support media.	05
		Agarose gels, polyacrylamide gels.	
		SDS PAGE, 2D PAGE	
		Pulsed field gel electrophoresis	
		Iso-electric focusing	
		Capillary electrophoresis	
5	Introduction to	Introduction, origin of x-rays, Bragg"s equation,	05
	x-ray	instrumentation and applications of x-ray absorption,	
	crystallography	instrumentation and applications of x-ray diffractions	
	and Diffraction		
6	Introduction to	Theory & applications of ORD & CD, the octant rule,	04
	ORD & CD		
Tota	al Lectures	•	48

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Practical Biochemistry Wilson and Walker.
- 2) A Biologist"s guide to principle and techniques of practical biochemistry –Wilson and Golding.
- 3) Principles of Instrumentation-Skoog. Analytical Chemistry- Anand and Chatwal.
- 4) Analytical Chemistry David Friefelder Biophysical chemistry by Nath and Upadhyay. Spectrometric analysis by P.N. Kalsi.
- 5) Instrumental methods of chemical analysis by Gurdeep Chatwal and Sham Anand.

MARKS: 100

PRACTICAL IN ANALYTICAL TECHNIQUES (4 Hrs. Per Week)

Teaching hours per week and credits for practicals: 4 hrs, 2 credits

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
	Lab orientation, acquaintance with infrastructure and instruments.	Developing competence and encourage hands on usage and maintenance of facilities and equipment's. SOPs and safety practices.	An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition
1.	Preparation of various common buffers such as Phosphate buffer saline (PBS), Tris buffer saline (TBS), Tris acetate buffer	To understand the preparation of various common buffers and its use in biological system, To understand the concept of molarity, normality etc., Measurement of pH, To understand, why a particular buffer is preferred for a particular range of pH	Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw-Hill Edition Calbiochem buffer booklet
2.	To study and understand the process of dialysis	Knowhow of preparation and usage of dialysis bag. Application of dialysis process, molecular weight cut off and desalting of proteins.	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw- Hill Edition

Sr	Name of the		Literature/ Web links for
No	. experiment	Learning objective	reference and videos
3.	Separation of various amino acids using paper chromatography and calculation of retention factor (R _f) value	To understand the principle of partition chromatography, technique of paper chromatography and calculation of R _f value of given unknown amino acids using the standard amino acids.	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition
4.	Separation of	To understand the principle	Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Physical Biochemistry by David
	various amino acids using Thin Layer chromatography (TLC) and calculation of Retention factor (R _f) value	of partition chromatography, techniques of thin layer chromatography and calculation of R _f value of given unknown amino acids using the standard amino acids.	Freifelder, Second Edition, W.H. Freeman and Company, New York Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition
			Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers
5.	To study the elution profile of given proteins (e.g. BSA, ovalbumin, lysozyme) on Sephadex G-50 / G-100 column	1. To know the preparation of the matrix, column packing, calculation of the bed volume, void volume and flow rate etc. 2. To determine the elution profile of given protein by	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw-
		taking absorbance at 280 nm and to understand the principle of molecularsieving. 3. Various application, desalting, protein separation etc.	Hill Edition Handbooks from GE Healthcare Life Sciences, Size Exclusion Chromatography Principles and Methods www.gelifesciences.com/handboos

SYLLABUS OF B. TECH. BIOTECHNOLOGY FOR BATCH (2017-18)

Sr.	Name of the		Literature/ Web links for
No.	experiment	Learning objective	reference and videos
6.	To study and determine the functioning of high performance liquid chromatography (HPLC)	1. To understand the principle of HPLC and functioning of the various parts of HPLC system. 2. To study the elution profile of the BSA using gel filtration column (on TSK-GEL gel filtration column from Tosoh Bioscience)	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York
	Estimation of protein by various methods such as Lowry's and Bradford.	To understand the principle of method, preparation of calibration curve with standard protein and calculation of concentration of unknown protein sample.	Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition An introduction to practical Biochemistry, third edition by David T Plummer, Tata McGraw-Hill Edition
8.	To find out the concentration of given bovine serum albumin (BSA) solution in mg/ml.	1. What is percent extinction coefficient? 2. What is the percent extinction coefficient of BSA and standard proteins? 3. How will you calculate the concentration of given protein solution using percent extinction coefficient in mg/ml?	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Extinction Coefficients, A guide to understanding extinction coefficients, with emphasis on spectrophotometric determination of protein concentration, https://tools.thermofisher.com/content/sfs /brochures/TR0006-Extinction- coefficients.pdf

Sr. No.		Learning objective	Literature/ Web links for reference and videos
9.	To estimate the molecular weight of given protein using Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE)	1.To study the principle and technique of SDS-PAGE for the separation of proteins 2. To check the purity of the protein using SDS-PAGE 3. Preparation of the standard curve (using standard protein provided) for estimation molecular weight of protein.	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York Laboratory manual in Biochemistry by J. Jayaraman, New Age International (P) Limited, Publishers Introductory Practical Biochemistry by S.K. Sawhney & Randhi Singh, Narosa Publishing House, Second Edition
10.	Centrifugation: Cell pelleting, subcellular fractionation of cell extract, handling of various type of centrifuges.	 To understand the basics of centrifugation. Demonstration of various type rotors, their function and use. Demonstration of functioning of various types of centrifuges. 	Physical Biochemistry by David Freifelder, Second Edition, W.H. Freeman and Company, New York

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
Major test at the end of semester	2.5 hours	60
Total		100

TITLE OF THE COURSE: CELL BIOLOGY

COURSE CODE: BS 302 L T P Hr C MARKS: 150 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic concepts of cell Biology. This is essential for taking further courses in Biotechnology during the next couple of years.

LEARNING OUTCOME:

At the end of this course, student should be able to comprehend essentials of cell Biology useful for their understanding at the later stage.

PREREQUISITES

This is an introductory course. There are no prerequisites for the course.

COURSE DESCRIPTION

Sr.	Topic	Description	Hrs
No			
1	Cell as basic unit of living	Pre-cellular evolution: artificial evolution of cells,	4
	systems (Prokaryotes,	Broad classification of cell types, how cells are studied	
	Eukaryotes)		
2	Biochemical composition	Proteins, Lipids, Carbohydrates, nucleic acids and	5
	of cells	Metabolic pool	
3	Ultra-structure of the cell	Cell membrane and special	3
		functions of membrane	
4	Structure and function of	Cytosol, Golgi bodies, ER (smooth and rough),	14
	cell organelles	Cytoskeleton structures (action, microtubules etc.),	
		Mitochondria, Chloroplasts, Lysosomes, Nucleus	
5	Cell-cell Interaction	Germ cells and Fertilization, Cellular mechanisms of	3
		development	
6	Cell division and cell		5
	cycle,		
7	Differentiated cells and		5
	the maintenance of tissues		
8	Cell senescence and death		5
Total l	Number of lectures		44

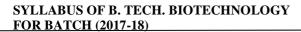
METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Cell and Molecular Biology by De Robertis. Molecular Biology of Cell by Bruce Alberts 2002.
- 2) The cell by Cooper 2000
- 3) Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P. S Verma and VK Agarwaal. Publisher S. Chand and Comp. 2005
- 4) Cell Biology by Powar



PRACTICAL IN CELL BIOLOGY

Marks 50

Teaching hours per week and credits for practicals: 2 hrs per week, 1 credit

Sr. No	Name of Experiment	Learning objective	References
1.	Introduction to the	To get acquainted with the	Fundamentals of
	instruments used in	instruments and SOP for the	Light microscopy
	cell biology	various instruments.	And electronic
	(Microscope,	This Exercise focuses on how to	Imaging, Douglas B. Murphy;
	Biosafety Cabinets,	develop a working knowledge of	A John Wiley & Sons, Inc.,
	Incubators,	the Microscope and its use.	Publication.
	Centrifuges, Pipettes)	Students should identify the	
		different parts of the Microscope	
		and safe handling.	
2.	Study of different cell	Students should be able to	Fundamentals of
	types under	differentiate between prokaryote,	Light microscopy
	microscope	eukaryote cells	And electronic
		Should be able to differentiate	Imaging, Douglas B. Murphy;
		between plant and animal cells	A John Wiley & Sons, Inc.,
		Should be able to differentiate	Publication.
		between cells from different	
		tissues	
3.	Slide preparation and	Cross-sectioning of monocot and	A Text-Book of Histology
	staining (plant)	dicot plant root, stem and leaf	Descriptive and Practical. For
		Staining and slide preparation	the Use of Students
		Identification of different	Author(s):
		anatomical features	Arthur Clarkson
		Preparation of permanent slide	ISBN: 978-1-4832-2783-2
			Methods in plant histology
			The university of chicago
			press
			Chicago, Illinois
			The Baker & Taylor
4	D1 10	A 1 1 1 1 1 C	Company
4.	Blood Smear	A classical method for	Dacie and Lewis
	Preparation and	identification of blood cell	Practical
	differential staining.	preparation.	Haematology
			Eleventh Edition, Barbara
			Bain Imelda Bates Mike
			Laffan S. Lewis

Sr. No	Name of Experiment	Learning objective	References
5.	Buccal smear –	A quick cytological method for	Acta Cytologica 2013;57:516-
	Identification of Barr	identification of sex in mammals-	521
	Body	an extreme case of chromosomal	(DOI:10.1159/000353216)
		condensation.	Cytological Assessment of
			Barr Bodies Using Aceto-
			Orcein and Papanicolaou
			Stains in Buccal Mucosal
			Smears and Their Sex
			Estimation Efficacy in an
			Indian Sample, Datar U. ·
			Angadi P.V.Hallikerimath S. ·
			Kale A.D, Acta Cytologica
			2013;57:516-521
			(DOI:10.1159/000353216)
6.	Mitosis in Onion	To study mitosis using Onion root	Conly L. Rieder. Academic
	Root-Tip Cells	tip cells.	Press, 1999 - Science Volume
			61 of Methods in cell biology,
			ISSN 0091-679X
7.	Meiotic cell division	To perform Meiotic cell division	Conly L. Rieder. Academic
	in grasshopper testis	in the given sample	Press, 1999 - Science Volume
			61 of Methods in cell biology,
			ISSN 0091-679X

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting		30
Total		50

TITLE OF THE COURSE: MICROBIOLOGY

COURSE CODE: BS-303 LTP Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with bacteria and viruses, their structures, metabolism, diseases caused by bacteria and viruses and their control.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of bacteria and viruses and diseases caused by them.

PREREQUISITES

Since the course is very basic in nature, school level knowledge in biology is sufficient to take the course and there are no prerequisites.

COURSE DESCRIPTION

Sr.	Topic	Description	Hrs
No.			
1	Introduction to	Scope and history of Microbiology. Characterization,	6
	Microbiology	classification and identification of microorganism.	
		Microscopic examination (Staining and microscopic	
		techniques)	
2	Microorganism-	Morphology and fine structure of bacteria. Cell wall structure	16
	Bacteria	in details. Cultivation of bacteria. Reproduction and growth.	
		Growth kinetics. Isolation and preservation.	
3	Control of	Control of By physical and chemical agents. Role of	4
	Microorganisms	antibiotics and chemotherapeutic agents	
4	Microbial	Microbial metabolism: Utilization of energy in Non-synthetic	4
	Physiology/	pathways (bacterial motility and transport of nutrients),	
	Metabolism	Biosynthetic processes. Novel bacterial pathways. Energy	
		production	
5	Microbial organisms	Host microbe interactions. Diseases caused by bacteria	4
	and diseases		
6	Microbes and	Symbiosis and antibiosis among microbial populations. N ₂	10
	environments	fixations in agriculture	
7	Viruses	Classification, structure and characterization of viruses	4
		Total number of Lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) General Microbiology: Vol. I & 2 by Powar & Daginawala
- 2) Microbiology by Pelczar
- 3) Microbiology by Prescott
- 4) General Microbiology by Stanier
- 5) Instant notes in Microbiology by Nicklin.
- 6) Principle of Fermentation technology by Stanbury & Witter

PRACTICAL OF MICROBIOLOGY (4 hours per week) Marks: 100

LIST OF EXPERIMENTS:

- 1. Introduction to lab apparatus (instruments and glassware).
- 2. Washing, plugging & sterilization of test tubes.
- 3. Study of microscope & observation of permanent slides (mitosis, meiosis, prokaryotic and Eukaryotic cells.
- 4. Preparation of media-NA (nutrient agar), NB (nutrient Broth), PDA, (Potato dextrose agar) and LB media
- 5. Isolation of microbes from soil sample on nutrient agar slants.
- 6. Isolation of microbes from soil & bacterial suspension by streak plate method. Observation of microbial growth & study of colony characteristics
- 7. Staining Of Microbes:
 - a. Monochromal
 - b. Negative Staining,
 - c. Grams Staining.
- 8. Endospores staining by Schaeffer and Fulton"s method).
- 9. Effect of Environmental parameters on growth of microorganisms.
 - a. Effect of pH.
 - b. Effect of temperature.
 - c. Effect of Buffered & unbuffered media.
 - d. Effect of Osmotic pressure.
- 10. Growth curve of E.coli.
- 11. Testing of antiseptics & dyes in the control of microorganisms.
- 12. Metachromatic granules staining.
- 13. Counting of cells (of micro organisms by pour plate and spread plate technique/by Hemo cytometer)

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF COURSE: PLANT PHYSIOLOGY

MARKS: 100

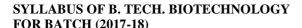
L T P Hr C

3 1 0 4 4

COURSE CODE: BT 301

OBJECTIVE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Plant Physiology and metabolism.


LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of plant physiology.

PREREQUISITES

Since the course is very advance in nature, student must know about different plant hormones and basic knowledge of plant anatomy and physiology.

Sr. No.	Торіс	Description	Hrs	
1	Introduction (special features of plants including anatomy, histology of plant tissues)		3	
2	Nitrogen fixation	Historical background. Nitrogen cycle in nature. Symbiotic nitrogen fixation. Nitrogenase system, nitrate reductase.	4	
3	Plant hormones	Auxin, Gibbrellins, Cytokinins, Ethylene, Abscissic acid-Discovery, effect on growth and development. Gibberilins- Discovery, effect on growth and development. Cytokinins- Discovery, effect on growth and developmeAbscisic acid Ethylene.	8	
4	Phytochrome action and circadian rhythms.	The photochemical and biochemical properties of Phytochrome. Localization of Phytochrome in tissues and cells. Characteristic of Phytochrome.	4	
5	Biochemistry of seed germination.		2	
6	Seed storage proteins.		2	
7	Physiology of flowering		2	
8	Physiology of fruit ripening.		2	

 I OIL DI	11 (11 (2017-10)		
9	Secondary metabolites	Gums, pectins, alkaloids, flavonoids, rubber, essential oils and anthocyanins.	6
10	Plant nutrition deficiency (natural and synthetic)	Micro, macro, natural and synthetic nutrients and their deficiency syndrome	3

11	Stress physiology.	Water stress, Heat Stress, Chilling and Freezing stress Salinity stress. Temperature (high/low)	6
12	Plant metabolism-Photosynthesis	Intracellular organization of photosynthetic system. Fundamental reactions of photosynthesis, photosynthetic pigments, role of light. Hill reaction and its significance, light reactions, cyclic and non-cyclic photo induced electron flow, energetics of photosynthesis, photorespiration, dark phase of photosynthesis, Calvin cycle, C-4 pathway, CAMP	6
		Total	48

METHODOLOGY

The course would be taught through lectures, demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Plant Physiology by Lincon Taitz (Amazon Publication)
- 2) Plant Physiology by Conn and Stumpf
- 3) Plant Physiology by Noggle and Fritz
- 4) Plant Physiology by Sallisbury and Ross
- 5) Plant Physiology by Devlin

COURSE NAME: GENETICS

COURSE CODE: BS 304 L T P Hr C MARKS: 100 3 1 2 6 5

OBJECTIVE OF THE COURSE:

In view of the increasing demand for training manpower in the area of Genetics, Molecular Biology, Genetic Medicine and Biotechnology, it was consensus of the committee (Faculties & experts) that this course should be broad based and should be able to give a good insight into modern biology and important component of hands-on training to the students.

Sr.	Topic	Description	Contact
No.			Hours
1	Mendel"s	Mendel"s experimental organism, the green pea.	8
	Principles of	Monohybrid cross: The principle of dominance and	
	inheritance.	segregation.	
		Dihybrid cross: The principle of Independent assortment.	
		Application of Mendel"s Principles	
		Punnett Square.	
		Forked Line Methods, Probability Chi Square method.	
		Mendel"s Principle in Human Genetics.	
		Pedigree. Mendel"s segregation in Human families.	
2	Extension of	Incomplete dominance and co-dominance.	5
	Mendel"s	Multiple alleles. Allelic series.	
	Principles allelic	Variation among the effect of the mutation.	
	variation and gene	Gene functions to produce polypeptides.	
	function.	Gene Action: Genotype and phenotype.	
		Influence of the environment.	
		Environmental effect on the expression of the Human	
		Genes.	
		Gene Interaction. Epistasis.	
3	Chromosomal	Chromosome Chromosome Number. Sex Chromosome.	8
	basis of	The chromosomal theory of heredity.	
	inheritance	Experimental evidence linking the inheritance of genes to chromosome.	
		Chromosome as arrays of gene.	
		Non-disjunction as proof of the chromosome theory.	
		Chromosomal basis of Mendel"s Principles of segregation	
		and	
		Independent assortment.	
		Sex Linked Gene in Human Beings.	
		Sex Chromosome and Sex Determination.	
		Dosage Compensation of the X- linked genes.	
4	Cytogenetics	Cytogenetical techniques.	5
		Variations in chromosome structure.	
		Variations in chromosome number.	
5	Non-Mendelian	Evidences for Cytoplasmic factors, cytoplasmic inheritance,	6
	inheritance	extranuclear inheritance (mitochondrial, chloroplast), non-	

FOR BATCH (2017-18)

 I OK DI	11 (11 (2017-10)			_
	,	chromosomal inheritance, maternal linheritance, uniparental inheritance.		
6	Genetic analysis of	Model organism for genetic analysis of development.	5	
	development	Development results from differential gene expression.		l

	Genetic study: Genetic Regulation of the development of		
		the Drosophila body plan	
7	Population	Theory of allelic frequencies.	5
	genetics. Natural Selection.		
		Random Genetic Drift.	
	Total Lecture		

METHODOLOGY

The course would be taught through lectures, demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

TEXT BOOKS:

A text book of genetics by Sambhamurthy

REFERENCE BOOKS:

- 1) Genetics by Russell
- 2) Genetics by Klug
- 3) Genetics by Tamarind
- 4) Genetics by Snustad & Simmons
- 5) Genetics by C.B Powar
- 6) Genetics by B.D Singh
- 7) Genetics by Pierce

PRACTICAL IN GENETICS

(2 Hrs. Per Week)

MARKS 50

Objective of the course:

The objective of the course is to familiarize the students with Genetic Subject

List of Practical"s

1) Model Organisms and their significance in Genetic studies:

Mendalian inheritance in Pea plants

Virus – TMV (Tobacco leaves)

Bacteria – E coil (slide)

Neurospora and Yeast (slides)

Paramecium (slides)

Coenorhabites elegans.

Drosophila melanogaster - Life Cycle

Mosquito (Anopheles and Culex) - Life cycle

Dissected reproductive system of Rat -

Maize, Pea, Arabiodopsis – Life Cycle

- 2) Induction of polyploidy in Onion root tips.
- 3) Methyl Green-Pyronin Staining of DNA
- 4) Dermatoglyphs of human fingers
- 5) Human Karyotype.
- 6) ABO Blood Gr
- 7) Genetic traits in population
- 8) Founder Effect
- 9) Isolation of Mitochondrial DNA
- 10) Plasmid DNA isolation
- 11) B Thalassemia
- 12) VNTR marker
- 13) Replica Plate Techniques
- 14) Growth curve analysis

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

NAME OF THE COURSE: MAMMALIAN PHYSIOLOGY

COURSE CODE: BS 305 L T P Hr C MARKS: 100 3 1 0 4 4

OBJECTIVE OF THE COURSE:

The objective of the course is to develop insight of physiological aspects of the mammalian systems with respect to various interactions occurring with all the major organs of the body.

This course will aim to develop skills linked to the understanding of the scientific literature that are introduced through different subjects like Microbiology, Cell Biology, Immunology and Pharmacology.

The course is well equipped to deal with branches of biophysics, biochemistry and clinical applications as well.

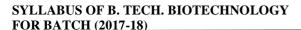
LEARNING OUTCOME

The course would enable the student to understand the integral mechanism operating in the mammalian system along with the regulation of each system.

ALSO THE STUDENTS SHOULD:

Have an enhanced knowledge and appreciation of mammalian physiology

Have gained knowledge of a number of important physiological systems including the endocrinology, nervous system and reproductive systems


Be able to recognize and identify the principle tissue structures in those systems.

Be able to analyze and extrapolate from their knowledge of the separate systems to discuss physiological responses to challenges such as exercise, fasting and ascent of altitude.

PREREQUISITES

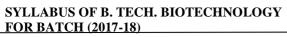
Since the course is very basic in nature school level knowledge in physics, chemistry & Biology is enough to take the course and there are no prerequisites.

Sr.	Topic	Description	Hrs
No.			
1	Basic concepts and principles:	Introduction and background (homeostasis, control systems).	4
2	The Physiology of Digestive system.	Anatomy and Histology of digestive system, Movement of food and absorption, Secretary functions of alimentary canal, digestion and absorption in gut, (liver and biliary system).	7
3	Physiology of Circulatory System.	Blood composition, blood pressure, and edema. The special fluid systems of the body – cerebrospinal, ocular, pleural, pericardial, peritoneal and synovial fluids. Regulation of the circulation, mean arterial pressure and hypertension, cardiac output and venous return, circulatory shock and its	4

physiology, cardiac failure, coronary circulation. 4 Physiology of Anatomy and Histology of Respiratory organs. Pulmonary respiratory system ventilation: Physical principles of gaseous exchange transport of O₂ and CO₂ in the blood and body fluids. Chloride & reverse chloride shift Body fluids and Kidney-5 Anatomy and histology of Kidney Osmotic equilibrium 4 Physiology. between extra cellular and intracellular fluids, Formation of urine by kidney, glomerular filtration and tubular function regulation of urine concentration and auto regulation. 6 4 Endocrinology: Histology of important glands like The pineal gland, Adrenal gland and their hormones: functions and disorders. Thyroid gland and their hormones: functions and disorders. Insulin, glucagons and related disorders. Parathyroid hormone, calcitonin and calciterol. Sex hormone: progesterone, estrogen and testosterone. 7. 5 Reproductive system-Male and female systems, Physiology Histology of male and female reproductive organs. Maintenance of female reproductive system, Female Reproductive Cycle, Sex hormones in puberty, menstrual cycle, menopause and inhibin function. 8. Parts of the nervous system, Structure and function of sensory Nervous system-Physiology receptors. Neural circuits and Nerve conduction. 9. High altitude and space Effect of low oxygen pressure, Effect of high altitude on 4 physiology: physiology, Artificial climate in the sealed spacecraft, Weightlessness in space. Effect of high pressure and decompression on diver, 10. Physiology of deep sea 4 diving and other hyper Hyper baric oxygen therapy. baric candidates. Total number of lectures 48

METHODOLOGY

Lectures supported with PowerPoint presentation. Lectures and in-class activities are intended to complement assignment. Thus the course will be covered through lectures supported by tutorials. Students will be given seminar topics of their own interest from their syllabus. Again students are expected to collect review and make power point presentations.


EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

REFERENCE BOOKS

- 1) Textbook of Medical Physiology by C. Guyton.
- 2) Physiology by C. Chatterjee.
- 3) Human Anatomy & Physiology by Tortora.
- 4) Medical Biochemistry Anant Narayan
- 5) Text Book of Biochemistry by Harper Ed. 1988
- 6) Medical physiology by Chaudhary.
- 7) Anatomy and histology by Ross and Wilson
- 8) Human Anatomy and Physiology by Creager

SEMESTER IV

Course Code	Course Name	L	T	P	Hr	Cr	Marks
BT 401	Molecular Biology-I	3	0	4	7	5	200
BT 402	Metabolism	3	1	0	4	4	100
BT 408	Animal Tissue Cultures & Stem Cells	3	0	2	5	4	150
BT 404	Plant Tissue Culture	3	0	2	5	4	150
BT 405	Immunology	3	0	2	5	4	150
BI 301	Concepts in Bioinformatics	3	0	4	7	5	200
	Total	18	4	14	33	26	950

TITLE OF THE COURSE: MOLECULAR BIOLOGY I

COURSE CODE: BT-401 L T P Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in molecular biology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of DNA structure, Replication, Transcription, Translation, Mutation, Recombination and Gene Expression.

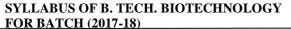
PREREQUISITES

Since the course is very advance in nature, student must know about Gene structure and gene regulation. Student must have background with Genetics.

Sr.	Topic	Description	Hrs
No.	_	-	
1	Introduction: Chemistry and Genetics	What is gene? Molecular basis of genes, DNA as genetic material, Meselson and Stahl experiment for semiconservative mode of DNA replication, What is Genetic Variation. Origin of Genetic variability Genetic information conveyed by sequences of nucleotides (central dogma), discovery of RNA, synthesis of m-RNA, what is genetic code. properties of genetic code establishment of genetic code	4
2	Structure and Maintenance of Genome:	Structure of DNA (Structure of purines, pyrimidines, Deoxy ribose sugar, Phosphoric acid, Nuceosides and Nucleotides) Structure of RNA What is Chromosome? Structure of chromosome, what is chromatin? Chromosome and chromatin diversity Chromosomal duplication and segregation, Nucleosome structure Higher order chromatin structure, Regulation of chromatin structure Mitochondrial genome	6
3	Replication of DNA in Prokaryotes and Eukaryotes:	Chemistry of DNA synthesis, Mechanism of DNA polymerase, replication fork (Okazaki fragments) Termination and control of DNA replication.	7
4	Mutation and DNA repair	Types of mutations. Replication errors and their repairs. DNA damage and repair.	4

SYLLABUS OF B. TECH. BIOTECHNOLOGY

5	Recombination:	Homologous recombination at molecular level: models of homologous recombination, proteins in homologous machines, homologous recombination in prokaryotes and Eukaryotes,	10
		nomorogous recombination in proxity ores and Bakaryotes,	
		mate typing, genetic consequences of mechanism of recombination. Site specific recombination and transposition of DNA: conservative site specific recombination, biological roles of sites recombination, transposable elements, and their regulations, V9DJ recombinants	
		Gene conversion.	
6	Transcription & Translation in	Transcription in Prokarotes (role of proteins and factors etc.) Transcription in Eukaryotes (role of proteins and factors etc.) RNA Splicing and RNA editing	6
7	Control of Gene Expression:	Prokaryotes, Lac Operon and Catabolite repression Eukaryotes, Transcription Factors Yeast, Protozoan Gene organization & expression in mitochondria and chloroplast Post translation regulation of gene expression Development and environmental regulation of gene expression	7
8	Oncogenes and Cancer:	Tumor cells, tumor suppressors genes, Transforming viruses	4


METHODOLOGY

The course would be taught through lectures and assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Instant notes in Molecular Biology by Turne.
- 2) Microbial Genetics by David Freifelder.
- 3) Molecular Biology by David Freifelder.
- 4) Molecular Biology of Gene Watson, Baker et.al. 5th Edition
- 5) Molecular Biology of the Cell by Alberts.
- 6) Genes by Lewin and Benjamin.

Teaching hours per week and credits for practicals only: 4 Hr 2 Cr Marks for Practicals: 100 Marks

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for
1	Preparation of glassware, plasticware, reagents and stock solutions for molecular biology	Special preparations for carrying out molecular biology experiments	reference and videos Sambrook J, Edward F, Maniatis T. Molecular
2	To isolate DNA from a) bacteria b) animal tissues/cells c) plant material using appropriate methods	To understand the critical requirement of specific methods depending on source of DNA	cloning Vol. 2. 2nd ed. New York: Cold spring harbor laboratory press; 1989.
3	Quantification of DNA by UV absorption and analysis by agarose gel electrophoresis	To understand the quality, and quantity of DNA present per cell	
4	To isolate plasmid DNA from bacteria, restriction analysis and agarose gel electrophoresis	To distinguish between plasmid and genomic DNA in terms of size and migration properties in gel	
5	To isolate RNA from eukaryotic cells and analyse by denaturing formaldehyde agarose gel electrophoresis	To understand various types of RNA/RNA profile and quality of RNA preparation	
6	To find the Melting temperature of DNA	Measure temperature and estimate T _m from your data	
7	Isolation of nuclei, calcium activation of endonuclease resulting DNA ladder including the mononucleosome formation	Hands-on verification of the concept of chromatin structure	
8	Extraction of histone from nuclei and analysis by SDS-PAGE	Understanding the contribution of histones in the formation of chromatin	

Internal evaluation will be based on following criteria

For practicals of 2 credits and 100 marks, internal evaluation will be for 40 marks with following break-up:

Practical: 10 marks

Attendance: 10 marks (above 80% attendance gets full marks) Laboratory assignment: 10 marks and Journal writing: 10 marks

TITLE OF THE COURSE: METABOLISM

COURSE CODE: BT 402 L T P Hr C
MARKS: 100 3 1 0 4 4

OBJECTIVE OF THE COURSE:

Metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. These processes allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The objective of the course is to familiarize the students to these various chemical reactions occurring in ones own body and the other living organisms alike.

LEARNING OUTCOME:

At the end of the course, students will have sufficient systematic and comprehensive knowledge about basic metabolism which will help them relate to the different physiological processes taking place in the cell and how inanimate chemicals cause life.

PREREQUISITES

The course requires that the students are well versed with properties and characters of biomolecules that they have learnt in their semester II, course no 202.

Sr.	Topic	Description	Hrs
No.	C	Inter-desired and a second believe and believe and believe and	1
1	Survey of metabolism	Introduction to metabolism-catabolism, anabolism and	1
2	C1 1 :	intermediary metabolism	2
2	Glycolysis	Two phases of glycolysis-detailed study of all the reactions	3
		Energy balance sheet, regulation of glycolysis by enzymes	
		and hormones, Anaerobic pathway of glucose metabolism.	
3	Gluconeogensis	Bypass reactions	6
	& Glycogen Metabolism	Regulation of gluconeogenesis by enzymes and hormones.	
		Glycogenolysis and glycogenesis	
4	Citric acid cycle(TCA)	Aerobic pathway of glucose metabolism- detailed study of	4
		all the reactions	
		Balance sheet. Regulation of the cycle	
5	Alternate pathway of	Pentose phosphate pathway (HMP shunt).	2
	carbon metabolism		
6	Lipid Metabolism	Requirement of carbon dioxide and citrate for biosynthesis,	2
		FAS complex & Regulation of biosynthesis	
		β oxidation of monounsaturated and polyunsaturated fatty	
		acids, Energetics of β oxidation, ketone bodies.	
7	Oxidative	Oxidative phosphorylation, structure of ATPase enzyme,	5
	phosphorylation	chemiosmotic hypothesis.	
	,	Complexes I, II, III and IV-components and	
		structure.Reactions of the electron transfer.	
8	Biosynthesis of	Biosynthesis of triglycerides and its hormonal regulation,	9
	triglycerides and	phospholipids from CDP-diacyglycerol, plasmalogens,	

membrane	sphingolipid, glycerophospholipid, PDGF. Cholesterol from	
phospholipids	acetyl CoA, fates of cholesterol, regulation of cholesterol	
cholesterol and steroi	d biosynthesis, steroid hormones from cholesterol, bile salts	

	hormones		
9	Integration of Carbohydrates, lipids and fats metabolism	Integration of Carbohydrates, lipids and fats metabolism	2
10	Biosynthesis of amino acids and its regulation	Glutamate, glutamine, proline and arginine from α-ketoglutatrate, Serine, glycine and cysteine from 3-phosphoglycerate Oxaloacetate and pyruvate as precursors for nonessential and essential amino acids Tryptophan, Phenylalanine and tyrosine from chorismate,regulation, transamination and deamination of amino acids	6
11	Biosynthesis & catabolism of nucleotides	Purimidines & pyrimidines-De-novo and salvage pathways.,metabolic disorders	4

METHODOLOGY:

The course should be taught through interactive lectures and demonstrations, which will help the students to relate the subject to everyday activity. Regular quizzing should be encouraged.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) The principles of Biochemistry by Nelson Cox
- Metabolic Pathways by Greenbrg
 Biochemistry by Lubert Stryer 3 rd Edition by W.H. Freeman and Co.
 Biochemistry by G. Zubay, Addision Wesly Publication 1988
 Biochemistry by Corn and Stump

TITLE OF THE COURSE: ANIMAL TISSUE CULTURE AND STEM CELLS

COURSE CODE : BT 408 L T P Hr C MARKS: 100 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the basics of Stem cells and Animal Tissue Culture Techniques and use of in various fields of research and human welfare.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the Animal Tissue Culture techniques, knowledge of aseptic handling of cell lines. Use of these techniques in various fields of research and medicine and human welfare.

PREREQUISITES

Student should have background of cell biology, cell division, basic of aseptic laboratory techniques. They should know basic concept of various laboratory media.

Topic	Description	Hrs
Introduction:	History,	4
	Cell culture techniques,	
	Equipment and sterilization methodology.	
Introduction to animal	Nutritional and physiological: Growth factors and growth	6
cell cultures:	parameters	
Primary cell cultures		4
	adherent and non-adherent cell lines with examples.	
Secondary cell cultures	Establishment and maintenance of secondary and	2
	continuous cell cultures	
Characterization of call	Vorgetyming highermical and constitution of	2
inics	cen mies, identification of cens, adventitious agents	
Application of cell	Vaccine production ,e.g. Measles, Rabies	2
cultures		
	Bioreactors for large-scale culture of animal cells	2
cells		
Tissue engineering	Principle and theory of tissue engineering	3
	Applications of tissue engineering	
Cryopreservation and	Cryopreservation	2
tissue culture	· ·	
	Tr	
Stem Cells Introduction	What Are stem cell?	2
	Introduction: Introduction to animal cell cultures: Primary cell cultures Secondary cell cultures Characterization of cell lines Application of cell cultures Bioreactors in animal cells Tissue engineering Cryopreservation and tissue culture applications	Introduction: History, Cell culture techniques, Equipment and sterilization methodology. Nutritional and physiological: Growth factors and growth parameters General metabolism and Growth Kinetics Primary cell cultures Establishment and maintenance of primary cell cultures of adherent and non-adherent cell lines with examples. Secondary cell cultures Establishment and maintenance of secondary and continuous cell cultures Characterization of cell lines, Identification of cells, adventitious agents Application of cell cultures Use of Hybridoma for production of monoclonal antibodies. Therapeutic biological products, cytokines etc Bioreactors in animal cells Tissue engineering Principle and theory of tissue engineering Applications of tissue engineering Cryopreservation and tissue culture applications Tissue culture applications

FOR B	CH (2017-18)	(DEEMED UNIVERSITY)	
	Where Do stem cell Come from?		
	Why Are stem cells here?		
	Where Are stem cells going?		

11	Stem Cells from Early	Introduction to ES cells, EC cells, EG cells and TS cells.	6
	Mammalian Embryos	Their origin and characteristics.	
	Adult stem cells	Adult stem cells ,Mesenchymal stem cells	
	,Mesenchymal stem		
	cells		
12	Embryonic Stem cells	Isolation of ES cells	4
		Salient features of ES cells	
		Application of ES cells.	
13	Stem Cells to Functional	What Are the Signals?	4
	Tissue Architecture	How they are processed?	
14	Stem Cells and Cloning	Therapeutic and reproductive cloning	3
		Nuclear Transfer method	
		Application of NT ES cells.	
		Safety of NT ES cells.	
15	Future for stem cell	Medical treatment	2
	research Ethics	Organ regeneration	
		Ethical consideration ,Regulating issues	
		Total	48

METHODOLOGY

The course would be taught through lectures, demonstrations and LCD powerpoint presentation

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

- 1) Cell and Tissue Culture by John Paul. Willams & wilkins Company. 2005.
- 2) Basic Cell Culture Vol. 290 Protocols by Cheryl D Helgason, Cindy L Miller. Humanan Press. 2005.
- 3) Basic Cell Culture 2nd Edition by JM Davis Oxford University Press.2002.
- 4) Tissue Culture in Biological Research by G. Penso and D. Balduki. Biotechnology by B. D. Singh: Expanding horizons. Kalyani Publishing. 2008..
- 5) Principle of Fermentation Technology by Stanbury P.F., Wittakar A. & Hall S.J. Pergamon Press. Oxford.1995.
- 6) Stem cell handbook, by STEWART SELL, Humuna Press. Inc. 2004.

PRACTICAL OF ANIMAL TISSUE CULTURE AND STEM CELLS

(2 Hrs. Per Week)

MARKS 50

LIST OF EXPERIMENTS

- 1. Laboratory set up for Animal tissue culture.
- 2. Equipments required for Animal tissue culture.
- **3.** Preparation of cell medium.
- 4. Preparation of Calcium Magnesium free Phosphate buffer saline
- **5.** Establishment of primary cell culture from chick embryo.
- **6.** PBMC separation by using Ficoll density gradient method.
- **7.** Passaging of monolayer cells using trypsinization protocol.
- **8.** Counting of viable cells using hemocytometer.
- 9. Freezing and revival of cells.
- 10. Preparation of stem cell culture medium
- 11. Cryopreservation of stem cells.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

TITLE OF THE COURSE: PLANT TISSUE CULTURE

COURSE CODE: BT 404 L T P Hr C MARKS: 150 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Plant Tissue Culture.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of cell culture and new techniques used in Plant tissue culture.

PREREQUISITES

Since the course is very advance in nature, student must know about Sterilization techniques and basic knowledge of Plant tissue culture. Student must have background with Agriculture.

Sr. No	Topic	Description	Hrs
1	History.	Cell theory,	2
		Concept of cell culture, Development of Tissue	
		Culture, Discovery of Auxins and cytokinins, cellular	
		totipotency, history, various terminologies	
2	Organization of plant	Aseptic Laboratory: Media preparation, Sterilization and	4
	tissue culture	Storage room, Different work areas:Media preparation	
	Laboratory	room,Culture room Transplantation area	
		Equipments and instruments required	
3	Aseptic techniques	Washing of glassware, Media sterilization	4
		Aseptic workstation, Precautions to maintain aseptic	
		conditions.	
4	Culture medium	Nutritional requirements of the explants, PGR"s and their in	3
		vitro roles, Media preparation	
5	Callus culture	Introduction, principle, protocols	3
	technique	Genetic variation and applications	
6	Suspension culture	Introduction, principle, protocols, Types, growth and growth	3
	technique	measurement, Synchronization, application and limitations.	
7	Organ culture	Introduction, principle, protocols	3
	technique	Root tips culture, leaf culture, shoot tip and meristem culture,	
		ovary and ovule culture.	
8	Anther and pollen	Introduction, principle, protocols, Haploids and its application	3
	culture technique		

FOR BATCH (2017-18)

		Define protoplast	
9	Protoplast culture	What is protoplast culture	7
		How protoplast fusion is done	
		Stages of protoplast cuylture,	
		Requirement and application	
10	Micro propagation	Concept, requirements, stages, explants, mention of	6
		somaclonal variation	
		Different pathways of micropropagation:	
		Axillary bud proliferation	
		Somatic embryogenesis	
		Organogenesis.	
		Meristem culture	
11	Secondary metabolites	Introduction, principal, optimization of yield.	3
	production and	Commercial aspects, applications and limitations.	
	biotransformations.		
12	Plant tissue culture	Agricultural crops	3
	production of:	Forest tree	
		Ornamental plants	
		Medicinal plants.	
		Endangered plant species.	
13	Applications of Plant	Somatic hybridization	4
	Tissue Culture:	Somaclonal variation	
		Germplasm preservation	
		Genetic transformations	
		Production of artificial seeds.	
		Bioreactor:-Industrial application of tissue culture	
-		Total no. of lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Plant tissue culture by A. C. Deb.
- 2) Plant tissue culture by Dodds and Roberts.

- FOR BATCH (2017-18)
 3) Biotechnology by H. D. Kumar.
 - 4) Biological science by Taylor.

Biotechnology by B. D. Singh.

PRACTICALS IN PLANT TISSUE CULTURE (2 hrs. Per Week)

MARKS 50

LIST OF PRACTICALS

- 1. Setting up of a plant tissue culture laboratory
- 2. To maintain aseptic conditions in Plant tissue culture laboratory
- 3. Preparation of stock solution of different Cytokinins and Auxins
- 4. To develop callus culture from excised tap root of carrot
- 5. To culture embryo from Dicot seeds.
- 6. Cell suspension culture of Azadirachta indica

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

TITLE OF THE COURSE: IMMUNOLOGY

COURSE CODE: BT 405 L T P Hr C
MARKS: 150 3 0 2 5 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the immune system and it s function and the advances in the immunology.

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of immune system, molecular biology of antibody formation, various immunological assay and function of immune system in various microbial infections.

PREREQUISITES

Student should have background of cell biology. They should know basic concept of molecular biology also to understand expression off immunoglobulin gene. They should know some basic assays.

Sr. No	Topic	Description	Hrs
1	Introduction to immunology	Overview of Immune system: History and scope of Immunology, Types of immunity: innate, acquired, Comparative immunity. Immune dysfunction and its consequences. b) Cells and Organs of Immune system: Cells of the immune system lymphoid cells: B, T and null cells, Primary lymphoid organs, secondary lymphoid organs-lymph nodes, spleen mucosal associated lymphoid tissues	6
2	Generation of B-cell and T-cell response:	Antigens: Immunogenicity vs. antigenicity Epitopes (properties of B-cell and T-cell epitopes)	4
3	Immunoglobulins Structure and Function:	Basic and fine structure of immune-globulin: light chains, heavy chains and sequences Antigen determinants on Immunoglobulin: Isotopic, allotypic, Idiotypic Immunoglobulin super family	6
4	Immunoglobulin Classes and Biological Activity:	Immunoglobulin mediated effectors functions optimization Activation of complement Antibody dependent cell mediated cytotoxicity. Clinical focus: Passive antibody therapy (IgG, IgM, IgA, IgE and IgD), hypersensitivity and immunological disorder	6

5	Organization and Expression of Immunoglobulin Genes:	 Genetic model compatible with Ig structure Multigene organization of Ig genes Variable region gene rearrangements Mechanism of variable region DNS rearrangements Generations of antibody diversity Class switching among constant regions genes Expression of Ig genes Regulation of Ig-gene transcription Antibody and genes and antibody engineering Clinical focus 	8
6	Antigen Antibody Interactions:	 Strength of antigen and antibody interactions: Antibody affinity, antibody avidity Cross reactivity Precipitation reactions, agglutination reactions (immunodiffusion and immunoelectrophoretic technique) Radioimmunoassay Enzyme linked Immunosorbant./Assay(ELISA) Western Blotting Immuno precipitation Immunofluorenscence Flow cytometery and Fluorescence 	6
7	MHC-Major Histo- compatibility complexes	MHC molecules and genes	4
8	Immune System in Health and Disease:	 Immune response to infectious disease (viral, bacterial and protozoan) Vaccines (whole organism, purified macromolecules, recombinant vaccine, synthetic polypeptide etc. AIDS, and other acquired or secondary immuno deficiency orders Autoimmunity Transplantation immunology: graft rejections, graft vs host response Cancer and immune system 	8

METHODOLOGY

The course would be taught through lectures, demonstrations and LCD powerpoint presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- Immunology 5th edition by Janis Kuby (W.H Freeman and company)*
 Essentials of Immunology by Ivan M. Roitt 5th Edition Blackwell Scientific Publ.
 Cellular and Molecular Immunology, 3rd edition, by Abbas
 Molecular Biology of the Cell by Bruce Alberts

Teaching hours per week and credits for practicals only: 2 Hr 1 Cr **Marks for Practicals: 50**

Sr.	Name of the	Learning objective	Literature/ Weblinks for reference and
No.	experiment		videos
1.	To determine	To understand about	Luttmann W, Bratke K, Kupper M, Myrtek,
	Blood Group	the various blood	Immunology, The experimental Series - II,
	antigens by	group antigens	USA, Elsevier, Academic Press; 2006
	hemagglutination	present in a	OSA, Lisevier, Academic Fress, 2000
		1 *	
	assay	population; principle	
		of agglutination	
2.	Detection of	Immunological	Rose NR, Hamilton RG, Detrick B. Manual
	syphilis using RPR	detection of specific	of clinical laboratory Immunology. 6 th ed:
	card test	bacterial infections by	ASM Press; 2002
		indirect agglutination	
			Hay FC, Olwyn MR. Practical immunology.
			4 th ed: Westwood. Blackwell Publishing
			Company; 2002.
			Company, 2002.
			Judith A. Owen JA. Punt J, Sharon A. Kuby
			Immunology. 7th ed. USA: Susan Winslow;
			2013
3.	Detection of	Immun ala ai a al	
3.		Immunological	Rose NR, Hamilton RG, Detrick B. Manual
	typhoid infection	detection of specific	of clinical laboratory Immunology. 6 th ed:
	by WIDAL test	bacterial infections by	ASM Press; 2002
		direct agglutination	
			Judith A. Owen JA. Punt J, Sharon A. Kuby
			Immunology. 7th ed: USA, Susan Winslow;
			2013
4.	Density gradient	Principle of density	Male D, Brostoff J, Roth DB, Roitt I,

separation of PBMCs using	gradient separation of immune cells	Immunology; 7th ed: Elsevier, 2007
Histopaque-1077	minune cens	Luttmann W, Bratke K, Kupper M, Myrtek, Immunology, The experimental Series - II, USA, Elsevier, Academic Press; 2006
		Cell Separation Media Methodology and Applications 18111569, handbook GE Healthcare
		Isolation of mononuclear cells Methodology and Applications 18-1152-69, handbook GE Healthcare

			http://www.gelifesciences.com/handbooks/
5.	To study	To learn about	Talwar GP, Gupta SK, A handbook of
	interaction of antigen and	precipitin phenomena at equimolar	practical and clinical immunology. 2 nd ed. Vol. I & II; 2006
	antibody by Ouchterlony double diffusion	concentrations of antigen and antibody	Rose NR, Hamilton RG, Detrick B. Manual of clinical laboratory Immunology. 6th ed: ASM Press; 2002
	assay		Hay FC, Olwyn MR. Practical immunology.
			4 th ed: Westwood. Blackwell Publishing Company; 2002.
			Judith A. Owen JA. Punt J, Sharon A. Kuby Immunology. 7th ed: USA. Susan Winslow; 2013
6.	Determination of	To learn about	Rose NR, Hamilton RG, Detrick B. Manual
	antibody titre by ELISA	different types of ELISA method and	of clinical laboratory Immunology. 6 th ed: ASM Press; 2002
		their applications	Talwar GP, Gupta SK, A handbook of
			practical and clinical immunology. 2 nd ed. Vol. I & II; 2006
			Judith A. Owen JA. Punt J, Sharon A. Kuby Immunology. 7th ed: USA. Susan Winslow; 2013
7.	Production of	Principle of	Talwar GP, Gupta SK, A handbook of
	polyclonal antibodies in mouse	immunization, collection and analysis of serum for	practical and clinical immunology. 2 nd ed. Vol. I & II; 2006
		antibody	
8.	Purification of IgG from serum	Single step purification of IgG by affinity chromatography	Freifelder D, Physical Biochemistry, 2 nd ed. W.H. Freeman and Company, New York; 1982
			Affinity Chromatography, Vol. 1: Antibodies, 18103746, handbook GE Healthcare

FOR BATCH (2017-18)

http://www.gelifesciences.com/handbooks/

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks)

Journal writing: 5 marks

TITLE OF THE COURSE: CONCEPTS IN BIOINFORMATICS

COURSE CODE: BI-301 L T P Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in Bioinformatics

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of Internet basics, Biological databases, warehousing of Biological data etc. This knowledge would be applicable in subsequent courses in Bioinformatics in the coming years.

PREREQUISITES

Students should be familiar with school level mathematics and Biology to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

Sr. No.	Topics	Detailed syllabus	No. of Lectures
1	Overview of	Scope and fields of Bioinformatics	04
	Bioinformatics	Contribution to different problems in biology	
2	Data acquisition,	File formats	06
	Database content,	Annotated sequence databases	
	structure and	Genome and Organism specific database	
	annotation:		
3	Retrieval of Biological	Data retrieval with Entrez and DBGET/ LinkDB, Data	06
	Data	retrieval with SRS etc.	
4	Introduction to nucleic	NCBI, EMBL, DDBJ, EBI	08
	acid and protein	NBRF-PIR, SWISSPROT, PDB etc.	
	databases		
5	Database similarity	BLAST, FASTA	03
	searches	PSI-BLAST algorithms	
6	Pairwise sequence	Clustering algorithm	04

FOR BATCH (2017-18)

	allignment	PRAS	
		Other MSA	
7	Multiple sequence alignment	Clustering algorithm, PRAS, Other MSA	04
8	Patterns Motifs, and Profiles	Derivation and searching, Derived Databases of patterns, motifs and profiles Prosite, Blocks, Prints, Pfam etc.	04
9	Introduction to phylogenesis	Phylogenetics, cladistics and ontology Building phylogenetics trees Evolution of macromolecular sequences	04
10	Introduction to structural	Amino acids, Polypeptide Composition, Secondary Composition	04

		Total Lectures	45
11	Introduction to	Homology, Analogy, Orthology Paralogy, Xenology	02
		Disulphide bonds Active Sites	
	Bioinformatics	Backbone flexibility ∴ & ψ Angles, Ramchandran Plot Tertiary & Quaternary Structure Hydrophobicity,	

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes. Students would be asked to do presentations and assessed on the basis of their presentations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1) Introduction to Bioinformatics Kothekar V.
- 2) Introduction to Bioinformatics By T. K.Attawood & D.J. Parry-smith
- 3) Bioinformatics By Arthur Lesk.
- 4) Instant notes in Bioinformatics by S. Sundara rajan & R. Balaji

MARKS: 100

PRACTICAL IN BIOINFORMATICS

(4 Hrs. Per Week)

LIST OF PRACTICALS

- 1. Introduction to Nucleic Acid and Protein Sequence Data Banks
 - NCBI
 - EMBL
 - DDBJ
 - EBI
 - NBRF-PIR,
 - SWISSPROT, PDB etc.
- 2. Database Similarity Searches:
 - BLAST
 - FASTA
 - PSI-BLAST algorithms
- 3. Multiple sequence alignments
 - Clustering algorithm
 - PRAS
 - Other MS
- 4. Patterns, motifs and Profiles in sequences:
 - PROSITE
 - BLOCKS
 - Prints
 - Pfam etc.
 - 5. Data Structure Algorithms

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

SEMESTER V

Course Code	Course Name	L	Т	P	Hr	Cr	Marks
BT 501	Molecular Biology-II	3	0	4	7	5	200
BT 502	rDNA Technology	3	1	0	4	4	100
BT 302	Enzymology & Enzyme Technology	3	0	4	7	5	200
BT 503	Basic Pharmacology and Toxicology	3	1	0	4	4	100
BT 504	Fermentation Technology	3	0	4	7	5	200
BT 506 /	Elective-I	3	0	4	7	5	200
BT 507	Biecuve-i			+	′		200
	Total		2	16	36	28	1000

Elective I (BT 506 : Food Biotechnology / BT 507 : Environmental Biotechnology)

TITLE OF THE COURSE: MOLECULAR BIOLOGY - II

COURSE CODE: BT 501 L T P Hr C
MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with Structural details of the cellular anatomy, genetic material of prokaryotes and eukaryotes, transcription and translation of the genetic material, protein localization, regulation of genes in Prokaryotes and Eukaryotes, Gene families, movable genes and cancer.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of DNA, the processes of transcription and translation and Gene regulation.

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of DNA and its structure, basics of protein structure, cell anatomy and its compartmentalization and basics of microbiology.

Sr.	Topic	Description	Hrs
No.			
1	Introduction to course	Review of structure of DNA and RNA, arrangements of	02
		Genetic material.	
2	Transcription in prokaryotes	.Transcription cycle in bacteria, role of proteins and factors	10
	and eukaryotes	of transcription, Transcription in eukaryotes, role of proteins	
		and factors of transcription, RNA splicing and RNA editing.	
3	Translation in prokaryotes	Steps of translation, Initiation of translation, initiation	08
	and eukaryotes	factors, role of Met-tRNA, elongation and its factors,	
		termination and protein stability	
4	Post translational controls	Protein modifications, protein folding patterns, role of	08
	and protein localization in	enzymes, protein transport of proteins in different	
	different organelles such as	organelles such as Mitochondria and lysosomes.	
	Mitochondria and lysosomes		
5	Gene Regulation	Gene regulation in prokaryotes, operon models, Gene	08
		regulation in eukaryotes, gene activators, enhancers and	
		silencers, gene regulation during development with	
		emphasis on Drosophila and plants.	
6	Multigene families and	Justification of the large nature of the genome, genome	05
	clusters	complexity, tandem repeats, micro and mini satellites.	

	 	al number of Lectures	48
0	Transposons and retroposons	replication of transposons and retroposons and applications.	02
Q	Transposons and retroposons	Mechanism of action of transposons and retroposons,	02
		transforming viruses.	
7	Oncogenes and Cancer	Tumor cells, tumor suppressor genes, oncogenic viruses and	05

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Instant notes in Molecular Biology by Turner.
- 2 Microbial Genetics by David Freifelder.
- 3 Molecular Biology by David Freifelder.
- 4 Molecular Biology of Gene by Watson, Baker et.al. 5th edition
- 5 Molecular Biology of the cell by Alberts.
- 6 Genes VII and VIII by Lewin and Benjamin.

PRACTICAL IN MOLECULAR BIOLOGY - II

(4 Hrs. Per Week) MARKS: 100

LABORATORY DESCRIPTION

Sr.	Laboratory exercise	Hrs	
No.			
1	DNA extraction from Plant materials	4	
2	Agarose gel electrophoresis of DNA	4	
3	Bacterial DNA extraction & Gel electrophoresis	4	
4	Plasmid DNA extraction & Gel electrophoresis	4	
5	Quantification of DNA by UV spectrophotometer		
6	Demonstration of SDS-PAGE	4	
7	Restriction digestion analysis	4	
8	Preparation of competent cells & transformation	4	
9	Replica Plate Techniques	4	

Dr. D.Y.

METHODOLOGY:

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

BOOKS RECOMMENDED

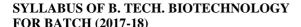
Molecular Cloning - Sambrook

TITLE OF THE COURSE: RECOMBINANT DNA TECHNOLOGY

COURSE CODE: BT-502 L T P Hr C MARKS: 100 3 1 0 4 4

OBJECTIVE

To familiarize the student with emerging field of biotechnology i.e. Recombinant DNA Technology As well as create understanding and expertise in wet lab techniques in genetic engineering.


LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of the subject and have good knowledge of application of Recombinant DNA techniques in Life Sciences Research.

PREREOUISITES

Knowledge of molecular biology is sufficient.

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Introduction	Landmarks in Molecular biology and biotechnology, Advantages of using microorganisms, What is genetic engineering and recombinant DNA technology, Control of gene expression and gene complexity in prokaryotes and eukaryotes., Genetic engineering in <i>Ecoli</i> and other prokaryotes, yeast, fungi and mammalian cells,	10
2	Tools in genetic engineering	Enzymes- DNA polymerases, restriction endonucleases, ligases, reverse transcriptases, nucleases, terminal transferases, phosphatases etc. Cloning vectors-plasmids, bacteriophage vectors, cosmids, phagemids, vectors for plant and animal cells, shuttle vectors, YAC vectors, expression vectors etc	6

ľ	OK BA	TCH (2017-18)		
	3	Gene cloning	Isolation and purification of DNA (genomic, plasmid) and	10
			RNA,, Isolation of gene of interest- restriction digestion,	
			electrophoresis, blotting,, Cutting and joining of DNA,,	
			Methods of gene transfer in prokaryotic and eukaryotic	
			cells,	
			Recombinant selection and screening methods- genetic,	
			immunochemical, South-western analysis, nucleic acid	
			hybridization, HART, HRT, Expression of cloned DNA	
			molecules and maximization of expression, Cloning	
			strategies- genomic DNA libraries, cDNA libraries,	
			chromosome walking and jumping.	
	4	Recombinant	Blotting Techniques, Autoradiography,	10
		DNA techniques	Hybridization, Molecular Probes and Nucleic acid labeling,	
			DNA sequencing, PCR, Mutagenesis, Analysis of gene	
			expression, DNA fingerprinting, RAPD, RFLP, AFLP.	
	5	Applications	Applications of Recombinant DNA technology	02
	6	Protein	Two-hybrid and other two component systems ,Detection	04
		interaction	using GST fusion protein, co-immunoprecipitation, FRE	
		technology	etc.	
	7	Gene therapy	In vivo approach, ex-vivo approach	02
			Antisense therapy, Transgenics.	
	8	Genetic	Prenatal diagnosis,	02
		disorders-	Single nucleotide polymorphisms,	
		Diagnosis and	DNA microarrays, Future strategies.	
		screening		
	9	The Human	The Human Genome Project details.	02
		Genome Project		
			Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials, PowerPoint presentations, research articles and practical. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Biotechnology-Fundamentals and Applications- SS Purohit
- 2 Principles of gene manipulation-Old and Primrose
- 3 Gene Biotechnology-Jogdand
- 4 Molecular Biology-Twyman
- 5 Principles of genetics-Klug
- 6 Molecular Biology of the gene-Watson
- 7 Molecular Cloning (Vol 1,2,3)-Sambrook and Russell

TITLE OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY

COURSE CODE : BT 302 L T P Hr C
MARKS: 200 3 0 4 7 5

OBJECTIVE:

The objective of the course is to familiarize the student with enzymes, their kinetics, purification and applications in different fields

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the enzymalogy. This knowledge would be applicable in different industries

PREREQUISITES:

This is an introductory course in enzymology. School level knowledge of organic chemistry and Biology is sufficient. There are no prerequisites.

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Enzymes	Classification: Trivial & EC system, Properties of enzymes. Enzyme substrate interactions, enzyme substrate complex, concept of active site, transition state theory, Effect of pH, temperature & substrate concentration on reaction rate.	08
		Enzyme Catalysis: Factors affecting catalytic efficiency - proximity and orientation effects, distortion or strain, acid-base, covalent & metal ion. Chemical modification of enzymes. Isoenzymes and multiple forms of enzymes.	2
2	Enzyme Kinetics & regulation of Enzyme action	Michaelis Menten equation, Significance of Km & Vmax. Enzyme inhibition- types and their kinetics. Enzyme activity, international units, specific activity, turnover number. Structure-Function Relations: chymotrypsin, lysozyme, metalloenzyme and the role of metals in catalysis with reference	10
		to carboxypeptidases. Ribozymes.	5
3	Allosteric	Types, positive & negative cooperativity, theory of concerted &	4

FOR BATCH (2017-18)

		interactions &	sequential models, kinetics of Allosteric enzymes.Enzyme	
Enzyme Regulation: Feed back, covalent &		Enzyme	Regulation: Feed back, covalent & Zymogen activation,	
		Regulations	Allosteric regulation.	
	4 Immobilization of Various methods of immobilization - ionic bonding, adsorption,		8	
		enzymes &	covalent bonding (based on R groups of amino acids),	
		applications	microencapsulation and gel entrapment, kinetics of immobilized	
	enzyme. Applications of enzymes: Food processing,			
			Medicine, Diagnostics, Production of new compounds, As	
	research tools (ELISA method)			
	Leather industry, textile industry.			
	5 Enzyme Recent advances in enzyme technology, Use of unnatural'		8	
		Technology	substrates, Enzyme engineering, Artificial enzymes, Coenzyme-	
L			regenerating systems.	
			Total Lectures	45

METHODOLOGY:

The course will be covered through lectures supported by tutorials. In tutorials would discuss different applications of enzymes and methods of their extractions and purification. Students would be given assignments in the form of questions. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Fundamentals of Enzymology. Nicolas C. Price and Lewis Stevens. Oxford University press. 2000.
- 2) Enzymes. Trevor Palmer. Horwood Publishing. 2001.
- 3) Lehninger Principles of Biochemistry by David L. Nelson and Michael M. Cox.Vth Ed.Palgrave Macmillan Pblication.2008.
- 4) Biochemistry by Stryer(4th edn) Fundamentals of Biochemistry by A. C. Deb. Biochemistry by Zubay.

Teaching hours per week and credits for practical only: Teaching Hours-4; Credit-2 MARKS: 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Handling of enzymes and estimation of specific activity of an enzyme (e.g. amylase, phosphatase, protease)	To understand enzyme substrate reactions, quantification of enzyme activity, concept of unit of enzyme, role of inhibitors, activators etc	Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, Page 149-158. Plummer DT. Introduction to Practical Biochemistry, third edition. Tata McGraw-Hill
2	Isolation of β-amylase from sweet potato (<i>Ipomoea batatas</i>)/ barley (<i>Hordeum vulgare</i>) and determination of enzyme activity using specific substrate	To learn procedures for isolation of crude enzyme from the given biological source and determine its activity To learn optimum conditions for isolation and activity analysis of enzymes from their	Edition; 1998. Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, 149-158 p.
3	Purification of enzyme by ammonium sulphate precipitation	Fractionation of protein using ammonium sulphate Learning the technique of enzyme concentration based upon salting in and salting out principle. Comparative study on the purity of crude and purified enzyme	Jakoby WB. [23] Crystallization as a purification technique. Methods in Enzymology. 1971 Dec 31; 22:248-52.
4.	Effect of physicochemical parameters (pH, temperature) on the activity of enzyme	To understand the role of physicochemical factors for optimum activity of enzyme	Seligman AM, Chauncey HH, Nachlas MM, Manheimer LH, Ravin HA. The colorimetric determination of phosphatases in human serum. Journal Of Biological Chemistry. 1951; 190:7-15.

Sr.	Name of the	Learning objective	Literature/ Weblinks for
No.	experiment	Learning objective	reference and videos
5.	In situ enzyme activity staining on SDS-Polyacrylamide gel. (Amylase, Lactate dehydrogenase)	Principles of negative staining, positive staining.	Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15; 227(5259):680-5. Raymond S, Weintraub L.
			Acrylamide gel as a supporting medium for zone electrophoresis. Science. 1959 Sep 18; 130(3377):711-711.
6.	Immobilization of enzyme by gel entrapment and cross linking method	Increasing the industrial significance of enzyme by enhancing its reusability and shelf life	Methods in Biotechnology, Vol 1, Immobilization of Enzymes and Cells Edited by Bickerstaff G. F., Humana Press, Inc, Totowa, N. J. 2006. Meena K, Raja TK. Immobilization of yeast invertase by gel entrapment. Indian Journal of Biotechnology. 2004; 3: 606-608.
7.	Study on enzyme inhibition.	Understand the role of catalytic amino acid residues in enzyme reaction mechanism	Strelow J, Dewe W, Iversen PW, Brooks HB, Radding JA, McGee J, Weidner J. Mechanism of Action assays for Enzymes. 2012. Eisenthal R, Danson MJ, editors. Enzyme assays: a practical approach. Practical Approach (Paperback); 2002.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF THE COURSE: BASIC PHARMACOLOGY AND TOXICOLOGY

COURSE CODE: BT-504 L T P Hr C
MARKS: 100 31 0 4 4

OBJECTIVE:

The objective of the course is to familiarize the students with aspects of Pharmacology and toxicity of different chemical compounds.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of quantitative and qualitative role and mechanisms of toxic chemical compounds.

PREREQUISITES:

Since the course is very basic in scientific world, student must know about graphical relation between doses is to response relationship with biological cell.

Sr.	Topic	Description	
No.			
1	Toxicology	Definition and derivation of toxicology	02
	Introduction	Sister sciences, endocrinology and pharmacology	
		Definition of toxins and toxicants	
		Key features of toxicology and study of toxicants	
		Modes of exposure, elimination, bioavailability, partition	
2	Dose Response	Toxicant targets	04
		Physiologic dose-response	
		The role of intercellular chemical communication: hormone,	
		receptor, transducer, effectors	
		Agonist, antagonist	
		Interconnections of transduction mechanisms	
3	Chemical Kinetics	Principles and practice of transition state mimicry	06
		Illustrative examples, collected substrate analog inhibitors	
		,and design strategies	
4	Cell death	Necrosis, Apoptosis;	04
		Neural and immune function overview	
5	Metabolism	Biochemistry of toxicant metabolism	05
		Enter hepatic circulation	
		Toxic dynamics and toxic kinetics	
6	Reproduction	Gamete production in mammals	
		Gestation in mammals	
7	Mammalian toxicity	Mammalian toxicity testing: in vivo, in vitro,	
		Multigenerational	

FOR BATCH (2017-18)

	Molecular methods, high throughput testing		
Stress and dose interactions			
Diet as modulator or mode of exposure			
		Predispositions to toxic risk	
8	Dosage	Moderators of toxic risk	
9	Clinical	Screening systems and their construction strategies	06
	Developments	Alternative strategies in lead identification, lead	
		optimization, pre-clinical development: Clinical trials,	
patenting and clearance for application			
		Total number of Lectures	48

METHODOLOGY:

The course would be taught through lectures, demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

1. Klaassen. McGraw-Hill:New York, NY. 2001. 1236 pp.

2. Casarett & Doull's Toxicology: The Basic Science of Poisons, 6th Ed.

COURSE NAME: FERMENTATION TECHNOLOGY LT PHrC **COURSE CODE: BT 505** 3 0 4 7 5

MARKS: 200

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the experimental tools used in Industrial microbiology and fermentation technology. The students would learn industrial techniques as: Isolation, improvement, maintenance and preservation of microbial cultures, Design of media, bioreactors and downstream processes along with production studies during the tenure of their study.

LEARNING OUTCOME

At the end of this course student would be able to understand basic principles of fermentation

technology as used in Biotechnology.

PREREQUISITES

Since the course is very basic in nature, school level knowledge in physics, chemistry & Biology is enough to take the course and there are no prerequisites.

Sr.	Topic	Description	Hrs
No.			
1	Introduction to fermentation	-Historical background -Important industrial biotechnologically derived products	2
	technology	important industrial biotechnologically derived products	
2	Fermentation Design	-Design of fermenter and its components (construction, impellers,	8
		valves, spargers, other attachments of the system)	
		-Layout of Fermenter unit and laboratory	
		Operation details of fermentation and trouble shooting	
		-Bioreactor types for products of microbial, plant and animal origin	
	G 111 1	-Role of computers in fermentation processes	1
3	Sterilization	-Sterilization of Fermenter (batch and continuous processes)	4
		-feed sterilization	
		-sterilization of liquid wastes	
		-Filter sterilization	
4	Isolation of microbes	-Isolation and preservation of industrially important microbes	4
	and Strain	-Strain improvement by recombinant DNA techniques, isolation of	
	improvement	mutants, etc	
5	Design of media and	-Nutritional media for microorganisms, their formulation,	7
	inoculum	sterilization, screening and economy for proper growth of industrial	
	development	microbes	
		- identification of variables important for fermentation	
		-Medium optimization using conventional and statistical designs	
		- Inoculum development for bacterial, fungal and yeast strains	
		-Aseptic inoculation in fermenter	
6	Microbial Growth	Kinetics of growth	6
	Kinetics	-in batch culture	
		-in continuous culture	
		-fed-batch culture	
7	Downstream	-Cell separation techniques	9
	processing	-Concentration of metabolites	
		-Purification of metabolites	
		-Crystallization and drying	
8	Biosynthesis of	-Industrial production of Antibiotics , enzymes, organic acids	8
3	metabolites with	,vitamins, amino acids, solvents, beverages and single cell protein	
	examples	, uning action, sortinges and single con protein	
	onampios		

48

Total number of lectures

METHODOLOGY

The course would be taught through lectures, demonstrations, tutorials and practical training.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

TEXT BOOKS

- 1. Principles of fermentation technology by P F STANBURY, S. Hall, A. Whitaker., Pergamon Press, USA.
- 2. W Cruger and A Cruger A Textbook of Industrial Microbiology 2nd Edition Sinauer Associates Sunderland US 2004
- 3. A.H. Patel. Industrial Microbiology. MacMillan. 2000.
- 4. Casida, L E JR 1984 Industrial Microbiology. Wiley Eastern (revised editions)

Teaching hours per week and credits for practicals only: 4 hours/week, 2 credits

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos *
1.	Isolation of industrially important	To understand the concept of	3,4
	microorganisms by screening	Primary and secondary	
	methods, enzyme producer,	screening.	
	antibiotic producer etc		
2.	Preservation of industrially	To understand the importance of	3
	important organisms by different	preservation of culture.	
	methods such as glyceol stock, dry		
	soil culture and lyophilization.		
3.	Study of bacterial and yeast	To know the principle of	1
	growth kinetics. Determination of	bacterial growth curve and	
	specific growth rate and generation	different phases.	
	time.		

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos *
4.	Production of alpha amylase by solid state fermentation, determination of enzyme activity/g of substrate and DSP methods for recovery of enzyme.	To understand the concept of solid state fermentation (SSF)	1 and 4
5.	Production of streptomycin/penicillin antibiotic by fed batch fermentation and determination of antibiotic activity.	To learn upstream and downstream processing in antibiotic fermentation. To learn antibiotic assays.	2 and 4
6.	Production of bioethanol from sugarcane juice and molasses by fermentation using <i>Saccharomyces cerevisiae</i> .	To understand industrial process of alcohol fermentation.	2
7.	Downstream processing for recovery of ethanol by simple distillation and detection by Chemical method and GC	To know simple and advanced method for alcohol recovery.	2, 1
8.	Production citric acid using Aspergillus niger by surface and submerged process and estimation of citric acid/ml of broth.	To know the basics of submerged fermentation process, To understand cell separation technique by centrifugation	2 and 4
9.	The recovery of citric acid by precipitation method and determination of yield of production.	To know product concentration by precipitation method. Purification by TLC /paper chromatography method.	2,1
10	Industrial visit to fermentation industry.	To learn different units in industry such as production. Quality control, Quality assurance, R & D, and Lab. To study unit operations in industry.	

* References:

- Manual of Industrial Microbiology and Biotechnology (2nd Edition by Arnold L. Demain and Julian E. Davies, Ronald M. Atlas, Gerald Cohen, Charles L. Hershberger, Wei-Shou Hu, David H. Sherman, Richard C. Willson and J. H. David Wu)
- 2. Industrial Microbiology-An introduction (By Michael J. Waites, Neil L. Morgan, John S. Rockey and Gary Higton)
- 3. Principles of Fermentation Technology (2nd edition, by Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Butterworth-Heinemann, An imprint of Elsevier Science

SYLLABUS OF B. TECH. BIOTECHNOLOGY FOR BATCH (2017-18)

4. Fermentation and Enzyme Technology By D.I.C. Wang, C.L. Cooney, A.L. Demain, P. Dunnill, A.E. Humphrey & M.D. Lilly John Wiley and sons, New York

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF THE COURSE: ELECTIVE 1 FOOD BIOTECHNOLOGY

COURSE CODE: BT-506 L T P Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Food Biotechnology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of biotechnological methods to improve the value of different food and new techniques used in Food Biotechnology.

PREREQUISITES

Since the course is very advance in science, student must know about the new biotechnological and molecular genetics method which to apply in food. Student must have background with Biotechnological aspects and molecular genetics.

Seq. No	Topic	Description	Hrs
1	Introduction to	Biotechnology application to food stuffs	02
	Food	Career in Food Biotechnology	
	Biotechnology	Activities of Food Biotechnologist	
2	Biotechnology in	Unit Operation in Food Processing	14
	Food Processing	Quality Factors in Preprocessed Food	
		Food deterioration and its control	
		Rheology of Food products	
3	Molecular	Methods And application of molecular cloning in foods	06
	methods and	Developmental technique for new plant verities	
	Production		
4	Application of	Microbial role in food products	16
	Biotechnology to	Yeast, Bacterial and other microorganisms based	
	Food products	process and products	

FOR BATCH (2017-18)

5	Modification and	Bioconversion of whey, molasses and starch and other	06
	Bioconversion of	food waste for value addition	
	food raw materials		
6	Regulatory and	Modern Biotechnological regulatory aspects in food	04
	Social aspects of	industries	
	Food	Biotechnology and Food : A Social Appraisal	
	Biotechnology		
		Total number of Lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Food Biotechnology: Dietrich Knorr, Inc. New York and Basel
- 2 Food Science: Potter N.N. CBS publication
- 3 Handbook of Food Biotechnology: NIIR Board of Consultants and Engg., NIIR
- 4 Food Science and Technology: B.S.Khattar, Daya Publishing House, Delhi
- 5 Biotechnology: B.D.Singh, Kalyani Publishers
- Food Microbiology: Frazier

PRACTICALS IN FOOD BIOTECHNOLOGY (ELECTIVE I)

(4 Hrs. Per Week) **MARKS: 100**

OBJECTIVE:

Objective of course is to familiarize the students with basic aspects of food microbiology, estimation of minerals from food products, chemical preservatives.

LEARNING OUTCOME:

At the end of the course, the students will be able to study & correlate the quality of food and food products on the basis of chemical & microbial analysis.

PREREQUISITES:

This is a basis course regarding study of food products parameters.

COURSE DESCRIPTION

Sr.	Topics	No. of
No.	Topics	Lectures
1	Determination of quality of milk by MBRT test	04
2	Detection of number of bacteria by SPC method	04
3	Microscopic determination of microbial flora from yoghurt and lactic acid determination	04
4	Microbial examination of food	04
5	Detection of pathogenic bacteria from food samples	04
7	Preparation of Cheese	04
8	To determine mineral salt concentrations in fruit juices by using flame photometer	04
9	To check the food efficacy testing of chemical preservatives	04
10	Preparation of Bread	04

METHODOLOGY

The course will be covered through practical work supported by field study. Students would be made to gain scientific data information using various food products resources. They would be taught how to improve quality and useful microbial flora to food products.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

BOOKS RECOMMENDED:

1) Practical in Food Microbiology

2) Practical in Microbiology: Kannan

TITLE OF THE COURSE: ELECTIVE 1 ENVIRONMENTAL BIOTECHNOLOGY

COURSE CODE: BT-507 L T P Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in Environmental Biotechnology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different types of biotechnological methods to improve environment value and new techniques used in Environmental Biotechnology.

PREREQUISITES

Since the course is very basic in science, student must know about the new biotechnological methods which to apply in environment. Student must have background with Biotechnological aspects and molecular genetics.

Sr. No.	Topic	Description	Hrs
1	Environment	Introduction and History Global warming	03
2	Environmental Pollution	Depletion of ozone layer Types of Pollution Water pollution, Soil Pollution, Air Pollution, Noise Pollution Sources of pollution Collection of samples from different sources	04
3	Air pollution and its control	Active trace gases in air Aerosols in air Control of air pollution through biotechnology	03
4	Microbiology of waste water treatment	Aerobic System Biological processes for domestic and industrial waste water treatments; Aerobic systems - activated sludge process, trickling filters, biological filters, rotating biological contractors (RBC), Fluidized bed reactor (FBR), expanded bed reactor, Inverse fluidized bed biofilm reactor (IFBBR) packed bed reactors air- sparged reactors. Anaerobic System Anaerobic biological treatment - contact digesters, packed column reactors, UASB.	06
5	Microbiology of degradation of xenobiotics	Xenobiotics in environment Decay behavior of xenobiotics	04
6	Bioremediation	Bioremediation I Introduction, constraints and priorities of Bioremediation, Biostimulation of Naturally occurring microbial activities, Bioaugmentation, in situ, ex situ, intrinsic & engineered bioremediation Bioremediation- II Solid phase bioremediation - land farming, prepared beds, Phytoremediation, Composting, Bioventing & Biosparging, Liquid phase bioremediation - suspended bioreactors, fixed biofilm reactors. Role of genetic engineering	06
7	Mining and Metal biotechnology – with special reference to Copper & Iron.	Sources Microbial transformation, accumulation and concentration of metals, metal leaching, extraction, biosorption and future prospects.	04

8	Bio Fuels	Microorganisms and energy requirements of mankind, Production of nonconventional	06
		fuels - Methane (Biogas), Hydrogen, Alcohols and algal	
		hydrocarbons, Use of microorganisms in augmentation of	
		petroleum recovery.	
9	Hazardous Waste	Biotechnology application to hazardous waste	6
	Management	management - examples of	
		biotechnological applications to hazardous waste	
		management - cyanide	
		detoxification - detoxification of oxalate, urea etc toxic	
		organics - phenols.	
10	Advances in	GIS in Environmental Management	06
	Environmental	Computer based Environmental modeling	
	Biotechnology	Design of ETPs	
		Total number of Lectures	48

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Textbook of Biotechnology-H.K.Das
- 2 Textbook of Biotechnology-Purohit
- 3 Stanier R. Y., Ingram J.L., Wheelis M.L., Painter R.R., General Microbiology, McMillan Publications, 1989.
- 4 Foster C.F., John Ware D.A., Environmental Biotechnology, Ellis Horwood Ltd., 1987.
- 5 Karrely D., Chakrabarty K., Omen G.S., Biotechnology and Biodegradation, Advances in Applied Biotechnology Series, Vol.4, Gulf Publications Co. London, 1989.
- 6 Bioremediation engineering; design and application 1995 John. T. cookson, Jr. Mc Graw Hill, Inc.

PRACTICALS IN ENVIRONMENTAL BIOTECHNOLOGY

(4 Hrs. Per Week) MARKS: 100

1) Methods of sampling for pollution measurement

- a) Statistical design for collection of samples from site
- b) Air sampling (Impaction)
- c) Soil sampling (soil probes/auger)

d) Water sampling (Niskin type or equivalent depth sampling)

2) Methods of Pollution Measurement (as per Indian and global recommendations)

- a) Air pollution by measurement of SOX (sulphur oxides-di), NOX (nitrous oxide-di) and suspended particulate matter.
- b) Water pollution by measurement of water conductivity, pH, dissolved oxygen, and turbidity.
- c) Soil pollution by measurement of metals and organic compounds.
- d) At least one representative biological indicator for each of air (lichens), water (Macroinvertebrate) and soil (Moss) pollution.
- e) Graphical representation of the data collected after analysis of samples and comparison of values with Indian and Global standards.
- 3) Community analysis of polluted and non-polluted sites by PCR based methods (eukaryotic and prokaryotic domain primers). Comparison of polluted versus non-polluted sites to ascertain the possible alteration in community structure introduced due to pollutant.
- 4) **Microbial biodegradation (aerobic and anaerobic) of any one pollutant** (e.g. hydrocarbon) or any xenobiotic and study of its decay behaviour.
- 5) **Bioremediation** Monitoring uptake of heavy metals using biological methods- organisms.
- 6) **Demonstration** for biogas production/visit to wastewater plant/biogas plant.

Note: Wherever it is not possible to perform the experiment due to limitation of equipment or other reasons, a demonstration will be arranged, however no more than 10% practical's will be demonstrations.

Semester VI

Course	Course Name	L	T	P	Hr	Cr
Code						
BT601	Virology	3	1	0	4	4
HU601	Principles of Management and Entrepreneurial	3	0	0	3	3
	Developments					
HU 602	Biosafety, Bioethics & IPR	3	1	0	4	4
BT 602	Genomics, Transcriptomics & Proteomics	3	1	2	6	5
BT 603	Biochemical Engineering	3	0	4	7	5
BI 504 / BI	Elective II	3	0	2	5	4
606/ BI 603						
Total		18	3	8	29	25

Elective II:

BI 504: Operating Systems BI 603: Perl & Bioperl

BI 606: Computer Networking

TITLE OF THE COURSE: VIROLOGY
COURSE CODE: BT 601
L T P Hr C
3 1 0 4 4

MARKS: 100

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with Viruses, their structure, Plant and Animal viruses and Molecular Virology.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of types of viruses and the various diseases caused by viruses.

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of Microbiology, DNA, and RNA.

COURSE DESCRIPTION:

Sr.	Topic	Description	Hrs
No.			
1	The Viruses	Discovery, virus structure, classification, viral replication cycle, detection and enumeration of viruses, virus cultivation in lab, viriods, prions.	10
2	Bacteriophages	Morphology, life cycle of viruses, reproduction of ds DNA phages, ss DNA phages and RNA phages, Lysogeny.	10
3	Plant Viruses	Nomenclature and classification, viruses of fungi, algae and protozoa, viruses infecting fruits and vegetables.	09
4	Animal Viruses	Viruses containing ss(+) RNA, ss(-) RNA, ds RNA and DNA and ssDNA, RNA tumor viruses requiring DNA intermediate for synthesis, Miscellaneous viruses.	13
5	Molecular Virology	Retroviruses and influenza viruses, interferons.	06
		Total number of Lectures	48

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Microbiology by Pelczar.
- 2 Microbiology by Atlas.
- 3 Field"s Virology.
- 4 Virology by Biswas and Biswas.
- 5 Microbiology by Prescott.

TITLE OF THE COURSE: PRINCIPLES OF MANAGEMENT AND ENTREPRENEURIAL

DEVELOPMENTS

COURSE CODE: HU 601 L T P Hr C MARKS: 100 3 0 0 3 3

OBJECTIVE OF THE COURSE:

The objective of the course is to prepare students competent in the field of quality control management of drugs and biopharmaceutical. The aim of the course is to create a general motivation amongst students to critically analyze the problem and how to apply the knowledge of quality management in their future endeavor. To prepare them to think independently for making newer project through literature survey, writing a review article on a topic aned 15 min. presentation to the class.

LEARNING OUTCOME

At the end of the semester it is expected that student understood the basics of quality control management practice in the industry and research labs., It is expected that they will be more confident to develop and implement the same policies in their research projects either for pursuing their higher education or for industrial application

PREREQUISITE

This is an advance level course. Students must have an understanding of introduction chemistry, Biology, Biochemistry, Microbiology, Pharmacology and toxicology of drugs, plant and animal biology,

Sr. No	Topic	Description	Hrs
1	Management	Role of managers and leaders in biotechnology companies	20
	Principles:	Innovative problem solving strategies Diverse and global work force Developing partnerships with other businesses Customers and competitors Utilization of technology Current challenges in organization Leadership skills, communication, conflict resolution, goal integration	
2	Creating	Market assessment of innovative technology	25

FOR BATCH (2017-18)

Biotechnology Enterprise:	Patents and licensing Corporate law Preparation of a business plan Raising money from venture capitalists Government grants Strategic alliances Sales and marketing Real estate Human resources Regulatory affairs Preparation of business plan for biotech start-up	
	Total lecture	45

METHODOLOGY

The course would be covered through lectures, supported by quizzes and case history discussion. A visit to pharma industry after the study will help their understanding om the sinkect. The students will be evaluated based pm twpc;ass test, lecture attendance, class participation, Write-up and power point presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Principles of management by Ellen A Benowitz
- 2 Greatest management principles in world by Michael Leboeuf
- 3 Management-principles and practices by Garry Dessler

TITLE OF THE COURSE: BIOSAFETY, BIOETHICS AND INTELLECTUAL PROPERTY RIGHTS

COURSE CODE: HU 602 L T P Hr C MARKS: 100 3 1 0 4 4

OBJECTIVE:

The objective of the course is to make students learn about the legal, safety and public policy issues raised due to the rapid progress in Biotechnology and development of new products. The biotechnology students suppose to understand and follow the regulatory framework important for the product safety and benefit for the society. The students are given case history to discuss and express their views.

LEARNING OUTCOME

At the end of the course, it is expected that students have understood the basic issues of Biosafety,

SYLLABUS OF B. TECH. BIOTECHNOLOGY FOR BATCH (2017-18)

Bioethics and IPR.IT is expected that they will be more confident to practice and implement all these policies in their future endeavor.

PREREQUISITES

This is an advance level course. Students must have an understanding of introductory undergraduate level course such as chemistry, biology, microbiology, plant and animal biology and molecular biology.

COURSE DESCRIPTION

Sr.	Topic	Description	Hrs
No			
1	Biosafety	Introduction and Development of Biosafety Practices Principles General lab requirements Definitions and Biosafety levels: 1,2,3,4	18
		Summery	
		Biological safety cabinets: centrifuges, Shipment of biological specimens, Biological waste management, Decontamination,	
		Biosafety manuals, Medical surveillance, Emergency response	
2	Bioethics	History and Introduction Ethics and genetic engineering Genetic Privacy	16
		Patent of genes	
		Human races	
		Trading Human Life	
		Human Cloning	
		Stem Cells	
		Eugenics	
		Biotechnology and Christian faith	
		Human genome and religious considerations	
		Case Studies	
		Final Considerations	
3	Intellectual	Introduction	14
	Property	Types of Intellectual Property Rights	
	Rights	Plant and Animal growers rights	
		Patents	
		Trade secretes, Copyrights, Trademarks	
		IPR and plant genetic recourses	
		GATT and TRIPS and Dunkels Draft	
		Patenting of biological materials	
		International conventions and cooperation	
		Current Issues	
		Patents for higher animal and higher plants	
		Patenting of transgenic organisms and isolated genes	
		Patenting of genes and DNA sequences	
		Indian scenario.	

Total number of Lectures

48

The course will be covered through lectures. The students will be given problems and case histories to discuss and clear their problems. The students will be evaluated based on two class tests, lecture and lab attendance, class participation, write up and quizzes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

1 Understanding Biotechnology by Borem

2 Biotechnology an Introduction: Barnum S.R.

3 Biosafety and Bioethics: Joshi

4 Introduction to Bioethics: Bryant

5 Legal Aspects of Business: Pathak

6 Intellectual Property Rights: Raju

7 Patent Law: Narayan

8 Intellectual Property Management: Jungham

COURSE NAME: GENOMICS, TRANSCRIPTOMICS AND PROTEOMICS

COURSE CODE: BT-602 L T P Hr C
MARKS: 150 3 1 2 6 5

OBJECTIVE:

Objective of the course is to familiarize students with the principles and techniques of high throughput genome analysis and gene expression. Such a study finds application in all the fields of genome and gene expression analysis in prokaryotes and eukaryotes.

LEARNING OUTCOME:

The students will have knowledge of genome gene expression profiling, and its high throughput analysis at the end of the course.

PREREQUISITE:

Students should have basic knowledge of molecular biology, recombinant DNA technology, cell biology and bioinformatics.

Sr. No.	Topic	Detail	Hrs.
1.	GENOMICS	Introduction to genomics and its scope. Comparative, functional, personalized and pharmacogenomics.	3
		Concept of gene ontology and ontology database.	1
		High throughput DNA sequencing technology, advances in next generation sequencing technology.	4
		Genome Centers and their organization, Genome databases.	2
		Bioinformatics tools for the analysis of global gene expression, NCBI,TIGR, BLAST	3 2
2.	TRANSCRIPTOMICS	Transcription and post-transcriptional modifications.	2
		Concepts in transcriptomics and its scope.	2
		Global expression profiling and Microarray gene expression analysis.	2
		Expressed sequence tags (ESTs), Sampling of ESTs from cDNA libraries. Bioinformatic analysis of transcriptome by ESTs database.	2
			2
		Serial Analysis of gene expression (SAGE). Massively parallel signature sequencing (MPSS) Bioinformatic analysis of promoter prediction, splice	1
		site termination site.	2
3.	PROTEOMICS	Concepts in proteomics and its scope. 2D gel electrophoresis and PD quest analysis of	1
		differentially expressed protein spots	2
		Mass Spectrometry Matrix Assisted Laser Desorption Ionization /Time of	1 1
		flight (MALDI/ TOF)	1
		SELDI	2
		Electrospray ionization (ESI)	
		Multidimentional liquid chromatography	2
		Reverse phase HPLC Bioinformatic analysis of Proteome SWISS PROT,	1 1
		PIR,PDB	1
		X ray crystallography	1
		Nuclear Magnetic Resonance (NMR)	1
		General protein array, Antigen array.	1
		Phosphoproteomics siRNA mediated gene silencing technique.	1
	1	SixtyA inculated gene shellellig technique.	

SYLLABUS OF B. TECH. BIOTECHNOLOGY	Dr. D.Y. PATI
FOR BATCH (2017-18)	(DEE

4.	Applications	Application of genomics, Transcriptomics and	3
		proteomics in agriculture, medicine and industry.	
		Total	48

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

REFERENCES BOOKS:

- Discovering Genomics, Proteomics, and Bioinformatics by A. Malcolm Campbell and Laurie J. Heyer, Benjamin Cummings publications, II edition, 2003
- Transcriptomics by Virendra Gomase and Somnath Tagore, VDM Verlag, 2009
- 4. Genome Transcriptome and Proteome Analysis by Alain Bernot, John Wiley and Sons Ltd.2004
- The Dictionary Of Genomics, Transcriptomics And Proteomics by Guenter Kahl Atlantic publisher, 2009, Vols I, II and III
- Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbour Laboratory Press (CSHLP), II edition 2004

PRACTICALS IN GENOMICS, TRANSCRIPTOMICS AND PROTEOMICS (4 Hrs. Per Week) **MARKS: 100**

OBJECTIVE:

The objective of the course is to familiarize students with the basic principles and the advancement in the field of genome analysis and gene expression. The practical"s intents to give students knowledge and hands on experience of genome expression analysis techniques.

LEARNING OUTCOME:

The students will have hands on knowledge of techniques of genome analysis, high throughput gene expression analysis by protein profiling, and its applications at the end of the course.

PREREQUISITE:

Students should have basic knowledge of molecular biology and Recombinant DNA techniques, cell biology and bioinformatics.

LIST OF EXPERIMENTS:

Sr.	Name of practical	Hrs
No.		
1	Nested PCR	4
2.	Multiplex PCR	4
3.	Nucleotide sequencing	4
4.	mRNA isolation	4
5.	Reverse transcriptase (RT) PCR	4
6.	Real time PCR	4
7.	Probe labeling by nick translation	4
8.	<i>in-vitro</i> transcription	4
9.	Isolation and characterization of Expressed Sequence Tag (ESTs)	4
10.	Proteome analysis by 2D gel electrophoresis	4
11.	BLAST analysis	4
12.	Bioinformatics analysis of promoter, splice site, and termination site	4

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

REFERENCE BOOKS:

1) Molecular Cloning by Sambrook and Russel

2) Practical manual, Cold Spring Harbor Lab. CSHL) Publication, 2004 Vol I, II and III

TITLE OF THE COURSE: BIOCHEMICAL ENGINEERING
COURSE CODE
BT - 603
L T P Hr C
3 1 4 8 6

MARKS: 200

OBJECTIVE:

The objective of the course is to create general understanding amongst the students in the subject of Biochemical Engineering through in-depth lectures. The objective of the course is create an understanding of concepts and basic principles in the subject with emphasis on how to apply the knowledge in industrial processes involving Biochemical Engineering.

LEARNING OUTCOME:

At the end of the semester, it is expected that students understood the basic principles of engineering knowledge to solve a critical industrial biotechnology problem. It is expected that they will be more confident to use the knowledge in pursuing the knowledge in production of useful metabolites.

PRE-REQUISITES:

This is an introductory level course. Students are expected to have an understanding of introductory knowledge in Physics, Chemistry and Biology.

COURSE DESCRIPTION

Sr.	Topics	Detail syllabus	No. of
No.			lectures
1	Introduction to	-Fundamentals of biochemical engineering	2
	Biochemical	-Biotechnology and Bioprocess engineering	
	Engineering		
	Stoichiometry &	-Principles of thermodynamics	6
2	Energetic Energetic	-Stoichiometry for metabolic pathways: Carbon metabolism, biosynthesis of molecules, Stoichiometry of cell growth and product synthesis, theoretical predictions of yield coefficients with examples	
3	+	Reactors for measurement of Kinetics, Structured Kinetic	6
3	Bioprocess Kinetics	Models, Balanced and transient growth kinetics, Kinetics of product formation, Death kinetics during fermentation process	U
4		Ideal & non-ideal bioreactors, reactor operations: Batch, Fed-	8
	Biological reactors	batch & Continuous. Growth, Substrate utilization and	
		Product formation: Mass & Heat Balances, Structured and	
		unstructured models	
		Bioreactor design & configurations, microbial reactors-	
		aerobic and anaerobic reactors, Immobilized enzyme & cell	
		reactor systems, Animal cell culture systems	
5	Transfer reactions Mass transfer concepts in Gas-liquid systems, mass transfer		8
		across free surface, KLa and oxygen transfer rate, rheology	
		and its relation to mass transfer, non-Newtonian fluids, factors	
		affecting Kla, heat transfer correlations	
6	Bioreactors:	Sensors for measurement of different parameters, on-line	7
	Operation and contro	l sensing and measurement systems, computational methods,	
		data analysis during process, Process control: regulatory and	
		cascade, continuous and advanced systems	
7	Scale up, process	Consideration of parameters for scale up, process economics:	6
	economics and	one example from laboratory to market and economic	
	applications	considerations, mathematical modeling of one system like	
		anaerobic digester and simulation studies	
8	Case Studies	Case studies (Product or technology based)	5
		- Microbial system	
		- Animal system	
		- Recent developments	
	Total		48

METHODOLOGY:

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1 P. F. Stanbury, A. Whitaker and S. J. Hall. 'Principles of Fermentation Technology', Pergamon Press, Oxford and revised editions.1995.
- 2 J. E. Bailey, D. F. Ollis Biochemical Engineering Fundamentals, 2nd edition, McGraw-Hill, New. York) and revised editions. 1986
- 3 Pauline Doran, Bioprocess Engineering Principles, Academic Press (1995) and revised editions.
- 4 Shuler, ML and F. Kargi. Bioprocess. Engineering: Basic Concepts (Second Ed.). Prentice Hall, Englewood Cliffs, NJ. 2002.

PRACTICALS IN BIOCHEMICAL ENGINEERING

(4 Hrs. Per Week) MARKS: 100

LIST OF PRACTICALS

- 1. Study of bioreactor design in laboratory.
- 2. Microbial Growth kinetics: Determination of specific growth rate (μ), Saturation constant (KS) and growth yield (Yx/S), Sp. product formation rate (Q1) and substrate consumption rate for the given microorganism in batch culture.
- 3. Study of Growth curve by optical density method. Determination of cell dry mass, and its corelation with N for *E.coli/S.cerevisiae*.
- 4. Determination of KLa by sulphite oxidation method.
- 5. Control of bioreactor and operation of biosensors for the control of pH, temperature, aeration and agitation rate in the bioreactor.
- 6. Determination of thermal death point and thermal death time for *E. coli* and for *Saccharomyces cerevisiae*.
- 7. Disruption of microbial cells (Baker's yeast) for the release of the intracellular proteins.
- 8. Immobilization of enzyme for demonstration of biological activity and immobilization efficiency.
- 9. Study of rheology of fermentation broth. Determination of viscosity and Packed cell volume (PCV)
- 10. Estimation of substrate consumption rate in fermenter batch based on glucose concentration in the broth.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

TITLE OF THE COURSE: C#.NET (ELECTIVE-II)

COURSE CODE: BI-606 L T P Hr C MARKS: 150 3 0 2 5 4

OBJECTIVE:

The objective of the course is to create understanding amongst the students in the subject of C# .Net through the practical and theory

LEARNING OUTCOME:

At the end of the semester, it is expected that students understood how to make Database & webpage designing, windows form design using C# .Net. It is expected that they will be more confident to use the aspects of C# .Net in pursuing their higher education or for Software Industries.

COURSE DESCRIPTION:

COC	RSE DESCRIPTION:		
Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Introduction/Overview	Introduction to .Net	4
	of .Net	Platform for the future	
		Drawbacks of Current Trend	
		Net Framework – BCL & CLR l Key design goals	
		CLR, CTS, MSIL & other tools.	
		Multiple Language Interaction & support 1 Moving from	
		Project to Assemblies	
		Security in .NET – CAS	
		Advantages/Disadvantages	
		Features of .Net	
		Assemblies in Detail	
		GAC, Strong Names	
2	Visual C#.Net	Advantages/Disadvantages	5
	Language	Why C#/ Why Not C#	
		Where does C# Fit in	
		C, C++ to Visual C#	
		Features of C	
		.NET Namespaces	
		.NET Versions – 1.1/2.0/3.0/3.5 Beta	
		Visual Studio.NET 2003/2005/Orcas/2008	

	, ,	Windows Vista – New Look Gadgets/SideBars/UAC – relation with .NET	
		Hardware/Software Requirements	
3	Drogramming Haing	1	5
3	Programming Using Visual C#.Net	The start of the application	3
	Visual C#.Net	C#.Net Program Design	
		Variables and types	
		Value types and reference types (CTS)	
		Strings and arrays	
		The Console class	
		String formatting	
		Statements and flows	
		Programming Structures	
		Command-line arguments	
		VS.NET to Create C#.NET Apps	
		C# 3.0/3.5 features – Implicit types, Extention Methods and	
		more	
4	Introduction To	Windows Forms – I	5
	Windows Form	Windows forms library – WinForms	
		Layout Enhancements	
		Forms and controls – Hierarchy	
		Creating simple GUI by hand	
		Event handling	
		Basic controls	
		Windows forms – buttons, check boxes, radio buttons,	
		panels, group boxes, list boxes, picture boxes	
		Windows Forms – II	
		Menus	
		Built-in dialog boxes and printing	
		Extender Controls	
		ToolStrips, StatusStrips and progress bars	
		A new MDI forms strategy	
		Inheritance with forms	
		New Controls – Web Browser, Property Grid etc	
5	Object Oriented	Classes & objects	4
3	Concepts (Basic)	Abstract & override methods	+
	Concepts (Basic)	Creating and using your own classes l Data members and	
		member methods l Instantiate an object	
		This keyword	
		Properties – Read Only Write Only	
		Build process using windows class library l Generate classes	
		for other clients	
	Object O in the	How to use classes as part of project	
6	Object Oriented	Accessibility levels, specifiers	6
	Concepts (Advanced)	Constructors	
		Method overloading	
		Class (static) variables & methods	
		Object destruction	
		"ref" and "out" parameters	
		Constant values	

		Enumerations	
		Inheritance and Polymorphism	
		The root of all classes	
		Creating derived classes	
		Method overriding and hiding	
		Polymorphism and virtual functions	
		Casting objects	
		Abstract classes	
		Sealed classes	
		Static classes	
7 I	Error Handling	Unstructured error handling support	4
	C	Structured error handling	
		Error categories	
		Debugging the application	
		Debug and Trace classes	
		Code Optimization	
		Testing and strategies	
8 A	Ado.Net	Ado.Net Components	7
		Data Sources And .Net Data Providers	
		Accessing Data In The Connected Environment	
		Accessing Data In Disconnected Environment	
		Sorting, Searching And Filtering	
8 A	ASP.Net	Introduction to web technologies	8
		Web Forms Architecture	
		ASP.Net and HTTP	
		Web application developing using Visual Studio	
		State Management and Web Applications	
		ASP.Net Server-side controls	
		Caching in ASP.Net	
		ASP.Net application configuration	
		Debugging, Diagnostics of application	
		Connectivity with Database using ADO.Net/Entity	
		Framework	
		Data Access Controls	
		Personalization and Security	
Total I	Lectures		48

BOOKS RECOMMENDED:

- 1) C Sharp.Net Complete Reference, McGrawHill
- 2) C# 2010 Programming: Author: Kogent Learning Solutions Inc. Publisher: Dreamtech Press Beginning ASP.NET 4.5 in C# and VB (Author:Imar Spaanjaars)
- 3) C# and the .Net Platform (second edition) by Andrew Troelsen, Aprèss publication. Beginning ASP.NET 3.5 in C# 2008 by Matthew MacDonald, Apress publication.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

PRACTICAL'S IN C#.NET

(2 Hrs. Per Week)

MARKS: 50

LIST OF PRACTICAL'S

- 1. Windows Form designing.
- 2. Windows Forms Layout
- 3. Windows forms buttons, check boxes, radio buttons
- 4. Windows forms panels
- 5. Windows forms group boxes, list boxes.
- 6. Windows forms -picture
- 7. MySQL Database connectivity
- 8. Sql Server Database connectivity
- 9. Oracle Database connectivity
- 10. MS excel Database connectivity
- 11. MS access Database connectivity
- 12. Error Handling(based on the syllabus)
- 13. Oop"s basic & advanced
 - i. Creating classes,
 - ii. Objects, passing values,
- iii. Creating method,
- iv. Method overloading,
- v. Method overriding,
- vi. Inheritance,
- vii. Abstract classes,
- viii. Static classes,
 - ix. Constructors,
 - x. Virtual functions.
- 14. Webpage designing. (based on the syllabus)
- 15. Database designing (based on the syllabus)

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

Elective II

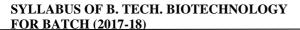
TITLE OF THE COURSE: COMPUTER NETWORKING

COURSE CODE:BI-606 L T P Hr C MARKS: 200 3 0 4 7 5

OBJECTIVE

- 1 To create general understanding regarding basic knowledge of networking in computers, which are the protocols used for transmission of data, devices used in networking.
- 2 To familiarize the student with the models used in networking like OSI model.
- 3 To increase the knowledge of student about cryptography, digital signatures, e-mails, etc.

LEARNING OUTCOME


At the end of the course, the students will have sufficient understanding of the basic knowledge of networking in computers, which are the protocols used for transmission of data, devices used in networking, bit transmission, cryptography, etc.

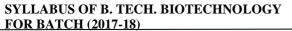
PREREQUISITES

Students should know the basics in networking like LAN, MAN, WAN concepts, HTML.

COURSE DESCRIPTION

Sr.	Topics	Detail Syllabus	No. of	
No.			Lectures	
1	Introduction:	Uses of computer Networks	06	
		Network Hardware		
		Network Software		
		Reference Models		
		Network Examples		
		Network standardization		
2	The Physical	The theoretical basis for data communication	06	
	Layer	Guided transmission media		
		Wireless transmission		
		Communication satellites		
		The public switched telephone network		
		The mobile telephone system		
		Cable television.		
3	The data Link	Data link layer design issues	06	
	Layer:	Error detection & correction		
		Elementary data link protocols		
		Sliding window protocols		
		Protocol verification		
		Examples of data link protocols		
4	The medium	The channel allocation problem 06		
	access control	Multiple access protocol		
	sub-layer	Ethernet		
		Wireless LANs		
		Broadband wireless		
		Bluetooth		

		Data link layer switching	
5	The network	Network layer design issues	06
	layer	Routing algorithms	
		Congestion control algorithms	


			1
		Quality of service	
		Internetworking	
		The network layer in the Internet	
6	The transport	The transport service	06
	layer	Elements of transport protocol	
		The internet transport protocols: UDP	
		The internet transport Protocol: TCP	
		Performance issues	
7	The application	DNS- the domain name system	06
	layer	Electronic mail	
		The World Wide Web	
		Multimedia	
8	Network Security	Cryptography	06
		Symmetric key algorithms	
		Public key algorithms	
		Digital signatures	
		Management of public keys	
		Communication security	
		Authentication protocols	
		E-mail security	
		Web security	
		Social issues	
		Total Lectures	48

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes. The topics which are difficult & important will be given in the question bank, which is to be solving before the semester ending.

Evaluation Scheme (Theory)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

Teaching hours per week and credits for practical only: 2 hours, 1 credit

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Study of network Connections, Cables, NICs, RJ45	Learning purpose, features, and functions of a network components.	Computer Networks by Tanenbaum, Andrew S, Prentice Hall of India, New Delhi
2	Study of Switch, Hub, Router, Repeater, Bridge and Gateway	Learning purpose, features, and functions of a network components.	Computer Networks by Tanenbaum, Andrew S, Prentice Hall of India, New Delhi
3	Establishing a local area network	To establish a local Area Network consisting of minimum three personal computers running the Linux and windows operating system, in order to share information and resources.	Computer Networks by Tanenbaum, Andrew S, Prentice Hall of India, New Delhi
4	Network IP Address	Learning the classification of IP address, assigning IP addresses to computers present in a network. Identify subnet address.	Computer Networks by Tanenbaum, Andrew S, Prentice Hall of India, New Delhi, Data Communications and Networking by Foronzan, Tata McGraw Hill, New Delhi
5	Network commands	Use command prompt instead of GUI	 http://whirlpool.net.au/wiki/ windows_nw_diag_cmds https://www.tecmint.com/linux-network-configuration-and-troubleshooting-commands/
6	Install and use internet based remote access software	Learn how to remotely control one computer from another computer	Data Communications and Networking by Foronzan, Tata McGraw Hill, New Delhi

RECOMMENDED BOOKS

- 1. Computer Networks by Tanenbaum, Andrew S, Prentice Hall of India, New Delhi
- 2. Data Communications and Networking by Foronzan, Tata McGraw Hill, New Delhi

Elective II

TITLE OF THE COURSE: OPERATING SYSTEM

COURSE CODE: BI 504 L T P Hr C MARKS: 200 3 0 2 5 4

OBJECTIVE

1 To create general understanding regarding basic knowledge of Operating system, concept of process, responsibilities of Operating System, management of disk, job scheduling etc.

2 To familiarize the student with Deadlock, Semaphores.

LEARNING OUTCOME

At the end of the course, the students will have sufficient understanding of the Deadlock: prevention, Memory organization and management, Virtual memory concepts, paging and segmentation, address mapping, Overview of the Linux OS.

PREREQUISITES

Students should know the basics in Computer, what is operating system

COURSE DESCRIPTION

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Overview	Operating systems, Functionalities and characteristics of OS. Hardware concepts related to OS, CPU states, I/O channels, memory hierarchy, microprogramming, Structure of Disk, Disk Storage Allocation Schemes for File Allocation Table The concept of Process, operations on processes, process states, concurrent processes, process control block, process context	3
2	File Systems Responsibilities of OS	File operations, attributes, extensions, types Access Methods Directory Organization Single Level Two Level Tree Structured Acyclic Graph Directory General Graph Directory Protection Consistency Semantics File System Implementation Management of Free Space Disk Scheduling Algorithms	3
3	History Using Windows OS	OS Features, capabilities, limitations UNIX process control and management, PCB, signals, forks and pipes	2
4	operating system organization	Interrupt processing, operating system organization, OS kernel FLIH and Dispatcher Job and processor scheduling, scheduling algorithms, process hierarchies Problems of concurrent processes, critical sections, mutual exclusion synchronization, deadlock Mutual exclusion, process co-operation, producer and	4

		consumer processes	
5 Semaphores		definition, init, wait, signal operations	3
		Use of semaphores to implement mutex, process	
		synchronization implementation of semaphores	
6		Critical regions, Conditional Critical Regions, Monitors, Ada	4
		Tasks.	
		Interprocess Communication (IPC), Message Passing, Direct	
		and Indirect.	
		16.Deadlock: prevention, detection, avoidance, banker's	
		algorithm	
7	Memory	Memory organization and management, storage allocation	4
	management	Virtual memory concepts, paging and segmentation, address	
		mapping	
0	Eile enconinction	Virtual storage management, page replacement strategies	4
8	File organization	blocking and buffering, file descriptor, directory structure File and Directory structures, blocks and fragments, directory	4
		tree, inodes, file descriptors, UNIX file structure	
9	Overview of the	History	4
,	Linux OS	Architecture Features and capabilities	7
	Linux Ob	Kernel, shell & applications	
		File System / Directory Structure	
		Multitasking and Multi-user system	
		Operating modes (RC scripts, Init levels)	
10	Important	Login	5
	concepts in a	Login scripts & profiles	
	Linux	X window system, the GUI under Linux	
	environment	Different window manager	
		Linux Installation	
		Linux Shell Programming Vi Text Editor, Shell Variables	
		Examples Piping and redirection	
		copy, rename, delete and move	
		directory listing, file handling and IO redirection	
11	Users and Groups	Concept of users and groups	3
		Owner creator	
		Primary and secondary group	
		types of file and directory permission	
12		Miscellaneous other commands cat, cal, date, passwd, less,	4
		grep, wc, bc uname, etc	
	Basic commands	KDE	
	and using GUI	Editors (Kwrite, Kedit)	
		Office Applications (word processors, spreadsheets)	
		Internet related applications (browsers, mail, clients)	
		Multimedia applications	
13	Command Line	Multimedia applications Additional text manipulation commands. e.g. cut, grep, split,	4

SYLLABUS OF B. TECH. BIOTECHNOLOGY

FOR BATCH (2017-18)

		Working with bash	
		Login scripts and profiles	
		Shell scripting	
		Introduction to regular expressions	
		Process management	
14	Trouble Shooting	Tips and Tricks	1
		Getting help	
		In silico viruses	
		Total Lecture	48

METHODOLOGY

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes. The topics which are difficult & important will be given in the question bank, which is to be solve before the semester ending.

EVALUATION SCHEME (THEORY)

Examination	Duration
I Internal	45 minutes
II Internal	45 minutes
Teachers assessment	
End Semester Exam	2 hours 30 minutes

Total

Teaching hours per week and credits for practical only: 2 Hrs and 1 Credit Marks for Practical: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Installation of Linux	process, creating	Gordon W. Getting started with linux: installing linux on your computer. Gizmodo Media Group; March 2011. Available from: http://lifehacker.com/5774997/getting-started-with-linux-how-to-install-linux-on-your-computer
2.	Studying directory structure		Operating systems lab manual. Rajlakshmi Engineering College; 2012. Available from: http://www.rajalakshmi.org/Dept/IT/CS2257 -LM.pdf
3.	Creating a Virtual Machine	concept of	Hargrave V. How to create a Linux virtual machine with VirtualBox; March 2013. Available from: http://vichargrave.com/how-

		effectively using the hardware	to-create-a-linux-virtual-machine-with-virtualbox/
4.	Learning Linux	•	Linux commands; Media college. [cited
	commands		December 2016] Available from:
		environment	http://www.mediacollege.com/linux/comman
			<u>d/linux-command.html</u>
5.	Gcc compiler	Compiling C and	How to create a first C program on Linux.
		C++ programs	The Linux information project; March 2016.
			http://www.linfo.org/create_c1.html
			https://www.youtube.com/watch?v=y2fagvb
			<u>da9I</u>
6.	Implementation	Learnhow waiting	Operating systems laboratory programs,
	of Scheduling	time and turnaround	LINUX shell and C programs. Source code
	algorithm	time is calculated for	solutions; 2015. Available from:
		the given burst time	http://www.sourcecodesolutions.in/2010/09/c
		of processes	s1254-operating-system-lab.html
7.	Shell Scripting	Writing scripts to	Basak U. Linux shell scripting (writing and
		automate various task	executing a shell script). YouTube video;
			June 2013.
			https://www.youtube.com/watch?v=xbx9wZ
			hroM8

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full marks)

Journal writing: 5 marks

BOOKS RECOMMENDED:

- 1 Introduction to Parallel Computing Second Edition by Grama et al. Addison-Wesley, Inc., 2003, ISBN 0-201-64865-2.
- 2 Modern Operating Systems (second edition), Andrew S. Tanenbaum, Prentice Hall Publishers, 2001, ISBN 0-13-031358-0.
- 3 William Stallings, Operasting Systems, Prentice Hall.
- 4 Harvey M. Deitel, An introduction to operating systems. Addison-Wesley.
- 5 Andrew Tanenbaum & Albert Woodhull, Operating Systems: Design and Implementation.Prentice-Hall.
- 6 Douglas Comer, Operating System Design The XINU Approach. Prentice-Hall.
- 7 A.M. Lister, Fundamentals of Operating Systems. Macmillan (1979)

Elective II TITLE OF COURSE: PERL AND BIOPERL	
COURSE CODE: BI 603 MARKS: 150	LTP HrC 3 0 2 5 4
COURSE CONTENT: 1. Introduction and Installation: Introduction to perl Use of Perl in Bioinformatics History, Availability, Support and Basic Concepts	4
2. Scalar Data: Number, ,String, Scalar Operators, Scalar Variables Scalar Operators, Functions	4
3. Arrays and List Data: Introduction, Literal Representation, Variables Array Operators and Functions, Scalar and List context	4
4. Control Structure: Data types: Arithmetic and logical operators Conditions and loops	4
5. Hashes: Hash variables, Literal Representation of hashes, Hash function	4
6. Basic I/O:	4
7. Regular Expressions: Use of regular expression, , Patterns, Matching operators Substitution, Split and Join functions	4
8. Subroutine : System and user function, The local Operator Variable length Parameter list	4
9. Advanced features in Perl: Advanced features in Perl, Advanced functions, operators files and directoric System Interaction, Using Perl's command line tool. References and Structures, Using Modules	4 es
10. Using Perl for CGI	6
11. Using Bioperl Modules	6

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1) Solutions & Examples for Perl Programmers by Nathan Torkington and Tom Chistiansen. Network Programming with Perl(1st edition) by Lincoln Stein.
- 2) Beginning Perl for Bioinformatics by James Tisdall, O-Reilly
- 3) Developing Bioinformatics Computer Skills by Cynthia Gibas, Per Jamberk, O-Reilly Developing Bioinformatics Computer Skills by Cynthia Gibas, Per Jamberk, O-Reily Learning Perl by Randal
- 4) Programming Perl by Larry Wall
- 5) Programming the Perl DBI by Alligator Descartes
- 6) Advanced Perl Programming

Teaching hours per week and credits for practical's only: 02 Hr 1 Cr Marks for Practical's: 50

	-		
Sr. No.	Name of the Experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Installation of Perl and BioPerl.	Learning installation process.	1. Tisdall James,
2.	Scripting to understand the scalar data representation.	Declaration of variables and use of operators.	Beginning Perl for Bioinformatics, 1 st edition, O'Reilly
3.	To write scripts using control structures.	Application of control structures.	Media, 2001.
4.	Write scripts using arrays and lists with biological example.	Use of arrays and lists.	2. Tisdall James,
5.	Write scripts using hashes with biological example.	To know about data structure hash.	Mastering Perl for Bioinformatics, 1 st
6.	Write scripts for Basic I/O with biological example	Handling user input and output.	Edition, O'Reilly Media, 2003.
7.	Writing regular expressions for motifs and pattern findings.	Learning to write regular expression.	3. Schwartz Randal,
8.	Write scripts using subroutines with biological example.	Organizing script using subroutines.	Phoenix Tom and Foy Brian d,
9.	Scripting to create and delete directories and providing various rights.	Learning directory operation	Learning Perl, 6 th edition, O'Reilly

	Script writing for file handling. Write scripts using CGI with biological	Learning file operation. Learning CGI.	Media, 2011.
	example.		
12.	Write scripts using BioPerl modules with	Using Perl modules for	
	biological example.	biological application.	

Internal evaluation will be based on following criteria

For practicals of 1 credit and 50 marks, internal evaluation will be for 20 marks with following break-up:

Practical: 10 marks

Attendance: 5 marks (above 80% attendance gets full

marks) Journal writing: 5 marks

Semester VII

Course	Course Name	L	T	P	Hr	Cr
Code						
BT 701	Biomembrane & Molecular Cell Signaling	3	1	0	4	4
BT 702	Nanobiotechnology and Biosensors	3	0	4	7	5
HU 701	Quality Control Management in Biotechnology	3	1	0	4	4
BT 703	Advances in Biotechnology	3	0	0	3	3
BT 704	Seminars in Biotechnology	3	1	0	4	4
BT707/ 708/ 709/710 Elective III		3	0	4	7	5
	Total			8	29	25

Elective III:

BT 707 : Metabolic Engineering BT 708 : Marine Biotechnology

BT 709: Agricultural Biotechnology

BT 710: Biopharmaceuticals

TITLE OF THE COURSE: BIOMEMBRANES AND MOLECULAR CELL SIGNALING

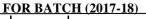
COURSE CODE: BT 701 L T P Hr C MARKS: 100 31 0 4 4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the interactions between cells, the pathways and mechanisms of cellular communications.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the cellular receptors, their types and their role in cell-cell interactions.


PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of enzymes, receptors, cellular transport and its machinery.

COURSE DESCRIPTION:

Sr. No.	Topic	Description		
1	Overview of cell-cell and intracellular signaling mechanisms	Endocrine transmissions, Paracrine transmissions, Autocrine transmissions, Synaptic transmissions	01	
2	Cell-cell recognition	Molecules involved in recognition, their functions and the mechanisms of recognition.	02	
3	Cell-adhesion molecules	CAMs, their properties and types.	02	
4	Concepts of receptors (extracellular, intracellular):	Receptor ligand interactions (concepts of agonist and antagonist) Receptor characterizations Receptor functions Extra cellular receptors Coupling of Receptors to different signal transducing machinery	07	
5	G-proteins	Structure and their function	02	
6	Ion channels and catalytic proteins	Justification of the large nature of the genome, genome complexity, tandem repeats, micro and mini satellites.		
7	Adenylate cyclase system	cAMP-PK and CREB proteins	04	
8	Calcium channels	Types of calcium channels, their structure, location and mechanism of transport.		
9	Oscillations of calcium concentration as signals	Consequence of low and high calcium concentrations in the cell and its effects.	03	

10	Receptors with protein tyrosine kinase activity	Structure and function	
11	Intercellular receptors	Steroid receptors, structure and function	02
12	Second messengers	Phosphoinositides, inositol1,4,5, tris phosphate,	06
		diacyl glycerol, camp, cGMP, arachidonic acid, prostaglandins and NO	
13	Mechanism(s) of signal transduction	Coupling of activation receptors to intracellular signal transducing machinery; protein kinase(s) cascade	06
14	Receptor modifications, adaptation of cells.	Different structural and functional modifications in the receptors. Cellular adaptations.	02
15	Developmental abnormalities due to defective signaling pathways	Abnormalities during growth and development.	01
16	Signal transducing machinery as targets for potential drugs	Different molecules in cell signaling, action of drugs on them.	02
Total number of Lectures			48

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Genes VII by Lewin and Benjamin
- 2 Molecular cell biology by Lodish, Baltimore
- 3 Molecular Biology of the cell by Bruce Alberts

TITLE OF THE COURSE: NANOBIOTECHNOLOGY & BIOSENSORS

COURSE CODE: BT 702 L T P HR C MARKS: 200 3 0 4 7 5

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with advanced research area and basic concept in stem cell biology

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of different types of stem cells and new techniques used in stem cell biology.

PREREQUISITES:

Since the course is very advance in nature, student must know about cell-cell interaction and cell signaling. Student must have background with cell biology.

COURSE DESCRIPTION

Sr. No	Topic	Description	Hrs
1	Introduction to Nanobiotechnology	Nanotechnology, Broad perspective, and Today's World, Importance of Nanoscale Science and Technology	3
2	History of Nanobiotechnology	Growth of Nanotechnology and development of Nanobiotechnology	3
3	Nanomaterials and nanoparticles	Pure metals, Metal oxides, Techniques to synthesize nanoparticles, Characterization of nanoparticles, Applications, Toxic effects of nanomaterials Carbon nanotubes- Chemistry of carbon nanotubes, types of carbon nanotubes, dendrimers, quantum dots, nanosomes	10
4	Nanotechnology and Life Sciences	Nanotechnology in medicine -Drug delivery -Drug encapsulation -Tissue repair and implantation -Bioresorable materials -artificial organs -other applications	10
5	Biosensors: General concepts	-Introduction to biosensors -History of discovery of biosensors -Components of a typical biosensor	02
6	Construction and designing of biosensors	- Properties of biosensors -Types of biosensors (Calorimetric, Potentiomentric, amperometric, optical, Piezo-electric, Immuno based sensors) -Representative design of each type of biosensor -Biomarkers and their role in development of medical	08

SYLLABUS OF B. TECH. BIOTECHNOLOGY

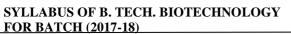
FOR BATCH (2017-18)

		biosensors	
7	Applications of biosensors	-Associated electronics with each category of biosensor	08
		- Applications related to healthcare, bio-defense, food	
		and water safety, agriculture and environment	
		- Multidisciplinary interactions for biosensor	
		development	
8	Case studies	-Success and failure of Nanodevices and biosensors with	04
		suitable examples	
		-Market status of Nanodevices and nanomedicine	
		Total Lectures	48

METHODOLOGY

The course would be taught through lectures and tutorials.

EVALUATION SCHEME (THEORY)


Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Bionanotechnolgy by David S. Goodsell 2004. John Wiley & Sons.
- 2) Biosensors: Fundamentals and applications, Oxford, U.K: Oxford University Press by Turner, A.P.F., Karube, I. & Wilson, GS. Oxford university Press. 1987
- 3) Weiss, Thomas Fischer. Cellular biophysics. Cambridge, Mass., MIT Press.1996

Teaching hours per week and credits for practicals: 4 hours/ week, 2 credits

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of silver nanoparticles using sodium borohydride	Method for preparing silver nanoparticles by chemical method	Preparation of colloidal silver nanoparticles by chemical reduction method. <i>Korean Journal of Chemical Engineering</i> . 2009, 26 (1);153–155

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
2	Green synthesis of silver nanoparticles using bacteria/plant/fungi	The importance of green synthesis of silver nanoparticles. Mechanism involved in synthesis of silver nanoparticles	Green synthesis of silver nanoparticles using <i>Azadirachtaindica</i> a queous leaf extract. Journal of Radiation Research and Applied Sciences. 2016 9 (1):1-7
3	Characterization of nanomaterials using Scanning Electron Microscopy.	The effect of the (nano) size of matter on its properties.	Characterization of silver nanoparticles synthesized using <i>Urticadioica</i> Linn. leaves and their synergistic effects with antibiotics <i>Journal of Radiation Research and Applied Sciences</i> .2016,9(3):217-227
4	Evaluation of antimicrobial activity of silver nanoparticles against Gram Positive and Gram negative microorganisms	The possible mechanism of antibacterial action of silver nanoparticles. The advantages of silver nanoparticles for medical uses	Characterization of silver nanoparticles synthesized using <i>Urticadioica</i> Linn. leaves and their synergistic effects with antibiotics <i>Journal of Radiation Research and Applied Sciences</i> . 2016, 9(3):217-227
5	Increasing bioavailability of drugs using nanostructured Betacyclodextrin	The importance of bioavailability of drugs during the treatment any disease. To increase the bioavailability of drug and its importance for antimicrobial study.	Transformation of Curcumin from Food Additive to ultifunctional Medicine: Nanotechnology Bridging the Gap. <i>Current Drug Discovery Technologies</i> , 2014, <i>11</i> , 197-213
6	Entrapment of silver nanoparticles in alginate beads for remediation of water.	The mechanism of gelation of alginate. Method for preparing alginate beads Applications of alginate beads loaded with AgNPs.	Preparation and Characterization of Silver Nanoparticles-Loaded Calcium Alginate Beads Embedded in Gelatin Scaffolds AAPS PharmSciTech. 2014; 15(5): 1105–1115.

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
7	Study of principle and working of glucose biosensor	The principle of working of a typical glucose biosensor. Construction of test strips using GOx. Method of using the glucose biosensor.	Glucose Biosensors: An Overview of Use in Clinical Practice (2010) Sensors, 10, 4558-4576; doi:10.3390/s100504558
8	Study of conductivity of DNA for use in biosensor	Important for developing DNA based amperometric systems and biosensors	Electrical conduction through DNA molecules. 1999 <i>Nature</i> 398, 407-410
9	Internalization of drug conjugated nanoparticles in mammalian cells	Study mechanism of silver nanoparticles penetration through cells.	Simple and Easy Method to Evaluate Uptake Potential of Nanoparticles in Mammalian Cells Using a Flow Cytometric Light Scatter Analysis. <i>Sci. Technol.</i> , 2007, 41 (8), pp 3018–3024
10	Study of nano-structured materials used for tissue engineering	What nanostructures are formed in PVA and Pluronic gelation? What are the methods by which PVA and Pluronic form gels	Nanostructured materials for applications in drug delivery and tissue engineering. <i>J Biomater Sci Polym</i> . 2007; 18(3): 241–268.
11	Construction of an enzyme-based optical biosensor		

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	15
Continuous Assessment		05
End semester Exam Viva & Spotting	2.5 hours	30
Total		50

TITLE OF THE COURSE: QUALITY CONTROL MANAGEMENT IN BIOTECHNOLOGY

COURSE CODE: HU 701 L T P Hr C MARKS: 100 3 1 0 4 4

OBJECTIVE OF THE COURSE:

The objective of the course is to prepare students competent in the field of quality control management of drugs and biopharmaceutical. The aim of the course is to create a general motivation amongst students to critically analyze the problem and how to apply the knowledge of quality management in

SYLLABUS OF B. TECH. BIOTECHNOLOGY FOR BATCH (2017-18)

their future endeavor. To prepare them to think independently for making newer project through literature survey, writing a review article on a topic and 15 min. presentation to the class.

LEARNING OUTCOME

At the end of the semester it is expected that student understood the basics of quality control management practice in the industry and research labs., It is expected that they will be more confident to develop and implement the same policies in their research projects either for pursuing their higher education or for industrial application

PREREQUISITE

This is an advance level course. Students must have an understanding of introduction chemistry, Biology, Biochemistry, Microbiology, Pharmacology and toxicology of drugs, plant and animal biology,

COURSE DESCRIPTIONS:

Sr. No.	Topic	Description	Hrs	
1	Introduction	General introduction about drugs manufacturing process	2	
1	minoduction	and policies		
2	TQM	Details of the total quality management.	2	
3	Industrial standard	ISO 9000 series, ISO 140000 series	3	
4	Pharmacopeias	Indian Pharmacopeias, British Pharmacopeias	1	
	1	US Pharmacopeias, Extra Pharmacopeias		
5	Good manufacturing	Introduction	3	
	processes	GMP and CGMP, GXP and GCP		
6	Key requirement of C	C GMP for API manufacturing	15	
	GMP	Quality management, Personel		
		Building and facilities, Documentation		
		Material management, Production and Inprocess control		
		Packaging Storage and distribution		
		Laboratory control Validation, Change control		
		Rejection and reuse of material, Complaints and recall		
		Contract manufacturers, Agents, Brokers, Traders,		
		Distributors, Repacker and retailer		
7 Good Laboratory History, Present Status		4		
	Practices Indian scenario			
8	ICH	ICH guidelines	4	
		History and Introduction, Necessity of ICH		
		International scenario and Indian scenario		
9 SOP Standard operating pro		Standard operating procedures	2	
10	MVP	Master Validation Plan in labs and industry	2	
11	Accredition &	National Accreditition Board for Testing &	2	
	Registration with	Calbbration(NABL)		
	various Regulatory	Registration with FDa of other countries for expoting		
	Authorities	formulations, API & NCE"s.		
Total number of Lectures 4				

METHODOLOGY

The course would be covered through lectures, supported by quizzes and case history discussion. A

SYLLABUS OF B. TECH. BIOTECHNOLOGY

visit to pharma industry after the study will help their understanding om the sinkect. The students will be evaluated based pm twp c;ass test, lecture attendance, class participation, Write-up and power point presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
IInternal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1 Quality control assurance Anjaneyulu
- 2 Pharmaceutical management by Itkar
- 3 Pharmaceutical master validation plan by Haider
- 4 Handhook of microbiological Quality Control by Baird.

TITLE OF THE COURSE: ADVANCES IN BIOTECHNOLOGY

COURSE CODE: BT 703	L	T	P	Hr	\mathbf{C}
MARKS: 100	3	0	0	3	3

TITLE OF THE COURSE: SEMINARS IN BIOTECHNOLOGY

COURSE CODE: BT 703	L	T	P	Hr	. C
MARKS: 100	3	1	0	4	4

Elective III

TITLE OF THE COURSE: METABOLIC ENGINEERING	L T PHr C
COURSE CODE: BT 707	3 0 4 7 5

MARKS: 100

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with the

LEARNING OUTCOME:

At the end of the course, the students will have sufficient scientific understanding of the different biotechnological methods

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge

COURSE DESCRIPTION:

Sr.	Topic	Description	Hrs
No.			

ŀ	1 Course Description Learning the basic biochemical concepts of metabolic pathways		15	
			Understanding the role of Bioinformatics in the study of	
			metabolic pathways	
			Learning the Bioinformatics-based approaches for predicting	
			and engineering metabolic pathways	
			Classification of Enzymes	
			Classification of Metabolic Pathways	
Ī	2	Metabolic Pathway	KEGG, EMP	15
		database	Malaria Parasite Metabolic Pathways	
			ECoCYC aetaCyc	
			Boerhringer Mannheim- Biochemical Pathways	
Ī	3	Enzymes, Compounds	LIGAND-Biochemical Compound and Reaction	15
		and Reaction databases	ENZYME-Enzymes	
			BRENDA- Comprehensive Enzyme Information System	
			Full Genome Annotation through knowledge of Metabolic	
			Pathways	
			Organism Specific Metabolic Pathways, Comparison of	
			Metabolic Pathways, Engineering of Metabolic pathways,	
			Representation of Metabolic Pathways	
			Generation and Dynamic Representation of Metabolic Pathways	
			Knowledge	
Deriving Common Principle			Deriving Common Principles from the Metabolic Pathways	
			knowledge	
ſ		To	otal number of Lectures	45

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Metabolic engineering edited by Sang Yup Lee and Eleftherious T. Papoutsakis
- 2. Metabolic engineering Principles and Mehodologies by Gregory N. Stephanopoulos, Aristos A. Ariostidou and Jens Nielsen.

Teaching hours per week and credits for practicals: 2 Cr 4 Hrs Marks 100

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Exploration and retrieval of metabolic pathway enzymes from Expasy	Understanding pathway databases and retrieval methods	http://enzyme.expasy.org/
2.	To Explore LIGAND- Biochemical Compound and Reaction database	Learns about biochemical component role through metabolic pathway and reaction database	http://www.genome.jp/ligand/
3.	To explore BRENDA metabolic pathways	Retrieval and exploration of BRENDA database for enzyme information in metabolic pathways	http://www.brenda- enzymes.org/tutorial.php
4	To explore Malaria parasite Metabolic pathways	Understanding the Malaria parasite database construction and retrieval system	http://mpmp.huji.ac.il/
5.	Identification of potential drug target for a given metabolic metabolic pathway	To make familiar with methodology to identify potential drug target in given metabolic pathway	http://www.genome.jp/kegg/path way.html
6.	Exploring comparative metabolic pathways by KEGG database and Biocyc	Tools give an idea to compare metabolic pathways in different species	https://biocyc.org http://www.genome.jp/kegg/path way.html
7	To construct metabolic pathway, PathoLogic and SBW	Learns construction and reconstruction of metabolic pathway with the help of offline tools	http://brg.ai.sri.com/ptools/
8.	Analysis of metabolic pathways by MetaFlux and Pathway editor	Understanding of Flux importance in the metabolic pathway analysis	http://brg.ai.sri.com/ptools/

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
9.	Genome annotation through metabolic pathways	Learns about genome annotation through metabolic pathways	 Metabolic Engineering - Principles and Methodologies by Stephanopoulos (2005) Elsevier publications http://david.abcc.ncifcrf.gov/
10.	MATLAB application in metabolic pathway	Learns utilization of MATLAB for analysis of metabolic pathways	http://kikollan.github.io/PFA- Toolbox/

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

Elective III

TITLE OF THE COURSE: MARINE BIOTECHNOLOGY

COURSE CODE: BT 708

L T P Hr C

3 0 4 7 5

MARKS: 100

Objective:

The objective of the course is to give an overview of marine environment and its living and nonliving resources. Further the utility of the resources for overall benefit of humans and other biota is also covered.

Pre-requisites:

Students are expected to have a basic understanding in Biology.

Course Description:

Sr.No	Topics	Detail syllabus	No. of lectures
	Marine Science Fundamentals	 Oceanography: Physical and chemical properties of sea water, Ocean winds and tides- Coriolis effect, El Nino, La Nina, Ekman motion, tsunami, submarines to study marine environment Bathymetry: Ocean basins, tectonics and sediments Marine biology and ecology: Biodiversity, benthos, food chain, non-cultivable life forms 	7

Sr.No	Topics	Detail syllabus	No. of lectures
2	Marine Microbiology	• Microbial diversity: Non-culturable microbes, extremophiles, metagenomics	6
		• Methods for assessment of microbial life forms: sampling, identification, community structure analysis	
		• Role of Microbes in marine ecosystem: beneficial and harmful effects, interactions with other flora and fauna	
3	Marine resources- Bioprospecting	• Marine Natural Products: screening using advanced high- throughput systems, isolation and identification techniques using genomics, proteomics or transcriptomics approaches	8
		 Bioactive compounds and Biomaterials: antibiotics, enzymes, alkaloids, biominerals, biocomposites, biopolymers 	
4	Marine culture	 Aquaculture: Methods, ponds, cultivation systems, examples- Gastropod, Bivalve and Crustacean production Marine life poisoning: marine toxins Aquatic animal health management: diseases of commercial fishes, spoilage, control methods Broodstock development: Maintenance of important 	10
		broodstock	
5	Advanced technologies and products	 Transgenic fish: development and applications Probing technologies: biochemical, molecular, bioindicators Biosensors: role in marine environment 	7
	N. 1.1. C	• Examples: of successfully commercialized products	~
6	Marine models of regenerative medicine	 Principles of organ regeneration: Xenopus and Zebrafish as models for regeneration Examples of marine biomaterials in regeneration: tissues, bone, orthodental, optical systems, cardiovascular devices, cochlear implants, etc Challenges and ethical issues 	5
7	Marine Conservation	 Pollution in the marine environment: endangered species, dead zones, impact of pollution on marine and human life Marine protection acts and laws: for conservation, Coastal Zone Management, Coastal Aquaculture Act, Fisheries Act Marine life conservation strategies: databases, maintenance of marine life 	5
	Total		48

Methodology:

The course will be covered through lectures supported by tutorials and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

SYLLABUS OF B. TECH. BIOTECHNOLOGY

FOR BATCH (2017-18)

Books Recommended:

- 1. Marine Biotechnology I, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005) pp. 287.
- 2. Marine Biotechnology II, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005) pp. 261.
- 3. Handbook of Marine Biotechnology, Kim, Se-Kwon (Ed.), Springer (2015) pp. 1512.

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

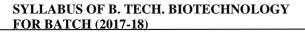
Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1) Micro Algae: Biotechnology & Microbiology, E.W. Becker Cambridge University Press.
- 2) Aqua Culture An Introduction, Lee & Newman, Interstate Publishers Biotechnology an Introduction, Susan R.Barnum, Vikas Publishing House

Elective III

PRACTICAL IN MARINE BIOTECHNOLOGY (4 Hrs.) MARKS: 100


Teaching hours per week and credits for practicals: 4 hours/ week; 2 credits

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Identification of phytoplanktons and zooplanktons using permanent slides	Introduce the students with different types of marine organisms.	Lab Manual Introduction to Marine Biology, (4 th Edition) by George Karleskint, Richard Turner, James Small (Brooks Scole Publication)
2	Isolation and identification of important marine yeast/fungi/bacteria	Learn the techniques of isolation of marine yeast/fungi/bacteria	Isolation and identification of important marine yeast/fungi/bacteria. <i>Indian Journal of Geo Marine Science</i> , 2011; 40(3), 391-397.
3	Enumeration of marine microbes using fluorescence, dark field and phase contrast microscopy	Identify number and different types of microbes from marine system	Lab Manual Introduction to Marine Biology, (4 th Edition) by George Karleskint, Richard Turner, James Small (Brooks Scole Publication)

SYLLABUS OF B. TECH. BIOTECHNOLOGY FOR BATCH (2017-18)

Sr.	BATCH (2017-18) Name of the experiment	Learning objective	Literature/ Weblinks for
No.	•		reference and videos
4	Study of microbial diversity	Learn the techniques for	16S rDNA-Based Metagenomic
	in a marine system using	rapid identification of	Analysis of Bacterial Diversity
	metagenomics and	marine microbial system.	Associated With Two
	community analysis		Populations of the Kleptoplastic
			Sea Slug Elysia chlorotica and
			Its Algal Prey Vaucheria
			litorea. 2012; Biol. Bull. 223:
			138–154.
5	Function or molecular	Identify bioactive	Lab Manual Introduction to
	screening for potential	compounds from marine	Marine Biology, (4 th Edition)
	bioactive compounds from	organisms and their	by George Karleskint, Richard
	marine bacteria (enzyme,	applications	Turner, James Small (Brooks
	polysaccharide/biofilm,		Scole Publication)
	biosurfactant or		
	bioemulsifier)	II C	District and decreased
6	Bioindicators for detection	Use of organisms to detect	Bioindicators: the natural
	of marine pollutants	the marine pollution.	indicator of environmental
			pollution. Frontiers in Life
7	Study of quality control	Quality control measures	Science, 9:2, 110-118 Comparison of selected
,	parameters for edible	for edible marine/fresh	methods of assessing freshness
	marine/fresh water fishes	water food	quality and remaining storage
	using molecular diagnostic	water rood	life of iced gilthead sea bream.
	techniques		Food Research International 36
	teemiques		(2003) 551–560
8	Optimization of different	Preparation of media and	Culturing Algae (2 nd Edition)
	media for growth of algae	its screening for optimum	by Daniel E. James. Carolina
		growth of algae	Biological Supply Company.
9	Algal Cell Culture and bio-	Learn the production of	Micro Algae : Biotechnology &
	fuel production from algal	bio-fuel from algae	Microbiology, E.W. Becker
	biomass		Cambridge University Press
10	Preparation of different	To learn preparation of	http://www.fao.org/3/a-
	types of ponds and	ponds and aquaponics	i4021e/index.html
	aquaponics chambers used	chambers for growing	
	in aquaculture	marine organisms	
11	Visit to Marine Research	To learn the research as	_
	Institute.	well as institutional	
		activities carried out by	
		institute	

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

Elective III

TITLE OF THE COURSE: AGRICULTURAL BIOTECHNOLOGY

COURSE CODE: BT 709

L T P Hr C

3 0 4 7 5

MARKS: 200

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with basic concepts and advanced molecular biology applications in Agriculture Biotechnology

LEARNING OUTCOME

At the end of the course, the students will have sufficient scientific understanding of different biotechnological methods to improve the crop production and sustainable agriculture.

PREREQUISITES

The course is an application science, hence the student must have a background with knowledge in the basics of Plant Physiology, Plant Tissue culture and Molecular Biology.

COURSE DESCRIPTION:

Sr.	Perticulars	Hrs.
No.		
1.	Introduction: Agriculture and Agricultural Biotechnology	2
2	Clonal Germplasm	
	Micro propagation	4
	In vitro production of pathogen and contaminant free plants	3
3	Biotechnology- Methods of Crop Improvement	3
	Genetic Engineering of Crop Plants	3
4	Transgenic Plants	4
	Molecular Markers	3
	QTL Mapping	3
5	Metabolite Production	
	Production of Secondary Metabolites	5
	Production of foreign compounds in transgenic plants	
6	Biofertilizers and Bioremediation	7
	Microbial Biopesticides, Biofungicides, Herbicides and Agricultural	
	antibiotics	
7	Biotechnology in Agriculture	3
	Ethical Aspects and Public Acceptance	
8	Animal farming, Animal farming with organic concept, Animal Breeding &	5
	Genetically modified animal products.	
	TOTAL	45

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOK RECOMMENDED:

- 1) Biotechnology by B. D. Singh, Kalyani Publication
- 2) Biotechnology Fundamentals and applications by S. S. Purohit, Student Edition Agricultural Biotechnology-Arie Altman, CRC Press
- 3) Biotechnology- An Introduction by Susan R. Barnum, Vikas Publishing House

PRACTICALS IN AGRICULTURE BIOTECHNOLOGY

(4 Hrs. Per Week) MARKS: 100

LIST OF PRACTICALS

- 1. Use of bioreactors in plant secondary metabolite production
- 2. Application of Polymerase Chain reaction Marker based selection by using PCR
- 3. *Agro-bacterium*-mediated transformation protocol and selection of transformed regenerated plants (Laboratory visit)
- 4. Visit to micro-propagation and Molecular Biology laboratory a laboratory with automated Genotyping/sequencing facility.
- 5. Green house technology: Visit to functional green house. Climate: Measurement of temperature, humidity, air velocity, CO2, inside the green house. Calculation of environment indices inside green house. Fertigation, Post harvest.

EVALUATION SCHEME PRACTICAL TRAINING

Examination	Duration	Marks
Minor test 1	1 hour	30
Continuous Assessment		10
End semester Exam Viva & Spotting	2.5 hours	60
Total		100

Elective III

TITLE OF THE COURSE: BIOPHARMACEUTICALS

COURSE CODE: BT 710 L T P Hr C MARKS: 100 3 0 4 7 5

OBJECTIVE OF THE COURSE:

To create general understanding regarding basic knowledge of Biopharmaceuticals to familiarize the student with the production techniques, mode of action and therapeutic uses of Biopharmaceuticals.

LEARNING OUTCOME:

At the end of the course, the students will have sufficient understanding of the current status of Biopharmaceuticals.

PREREQUISITES

Students should know the basics of Microbiology, Biochemistry.

COURSE DESCRIPTION

Sr.	Topics	Detail syllabus	No. of
No.			Lectures
1	Overview	Introduction and current status of Biopharmaceuticals in the pharmaceutical industry How are Biopharmaceuticals different from Pharma ceutical	4
2	The drug	products Good Manufacturing Practices, Source of Biopharmaceuticals,	6
	manufacturing process	production, analysis and immunological approaches for the detection of contaminants in the final product.	
3.	Hormones of therapeutical interest	Insulin, Insulin receptors, production of human insulin by rDNA technology, insulin formulation, Glucagon, Human growth factors(hCG) – biological effect, recombinant hCG- production and uses, Gonadotrophins, FSH, LH.	6
3	Blood Products and Therapeutic Enzymes	Blood cells, blood substitutes, serum protein isolation, haemostatic, coagulation pathway, blood factor isolation for transfusion, anticoagulants, thrombolytic agents, enzymes of therapeutical value	6
5	Growth Factors	Growth factors and wound healing, Insulin like growth factors (IGFs)- biochemistry, receptors, binding proteins, biological effects, IGFII and effect on fetus development and reproduction neuronal, Epidermal growth factor (EGF), Platelet derived growth factors (PDGF).	6
6.	Haemopoietic growth factors	Erythropoietin (EPO) - receptors, transduction regulation therapeutic applications.	4
	Antibodies,	Polyclonal antibodies, Monoclonal antibodies and their	4

SYLLABUS OF B. TECH. BIOTECHNOLOGY

7.	vaccines and	production by hybridoma technology, applications of	
	adjutants	Monoclonal antibodies	
		Vaccine Technology, traditional vaccine production, impact of	

		genetic engineering on vaccine technology, Vaccine adjuvant.	
8	Nucleic acid therapeutics	Basic approach to gene therapy, vectors used in gene therapy, manufacturing plasmid DNA, antisense technology, and ribozymes.	4
9	Cytokines, Interleukins and Interferon	Biological effects, biochemistry, production and therapeutic applications	5
		Total lectures	45

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

1. Biopharmaceuticals- Biochemistry and Biotechnology. Second Ed. Garry Walsh. John Wiley and Sons. 2003

PRACTICALS IN BIOPHARMACEUTICALS

(4 Hrs. Per Week) MARKS: 100

Teaching hours per week and credits for practicals only: 4 Hr 2 Cr

Marks for Practicals: 100

Hands-on practicals as listed below shall be performed or small research projects in this area can be undertaken based on the availability of faculty

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for
No.			reference and videos
1	Chemical assay for estimation	To know the simple assay	1. Kayser O, Warzecha H.
	of penicillin	for antibiotic	Pharmaceutical
	/streptomycin/tetracycline	determination.	biotechnology: drug
	antibiotics	To understand chemical	discovery and clinical
		composition and reactivity.	applications. John Wiley
		To know the mode of	& Sons; 2012.

SYLLABUS OF B. TECH. BIOTECHNOLOGY

OR B	<u>BATCH (2017-18)</u>	action of antibiotics	2 Reale IM Block I Hill
2	Bioassay to determine the	To know the simple assay	2. Beale JM, Block J, Hill R. Organic medicinal
	antifungal activity of standard	for determination of	and pharmaceutical
	Aureofungin/ clotrimazole/	antifungal compounds.	chemistry. Philadelphia:
	fluconazole/	To know the mode of	Lippincott Williams &
		action of antifungal	Wilkins; 2010.
		compounds.	3. Foye WO. Foye's
		To understand the structure	Principles of Medicinal
		of antibiotic	Chemistry. Lemke TL,
3	Bioassay to determine the	To know the role of	Williams DA, editors.
	antibacterial activity of	bioassay in	Lippincott Williams &
	standard penicillin,	pharmaceuticals.	Wilkins; 2008
	streptomycin, tetracycline	To understand the disc and	4. Lachman, Leon et al.
	antibiotics by standard	well diffusion assay	"The Theory and
4	disc/well method	method	Practice of Industrial
4	Sterility testing of commercial	To determine the quality of	Pharmacy", 3rd Edition,
	injectable such as saline water,	pharma products with	Varghese Publishing
	eye drops or ear drops	respect to microbial contamination.	House, 1986.
		To understand the	5. Godkar PB, Godkar DP, Textbook of Medical
		commercial significance of sterility testing in	Laboratory Technology
		biopharmaceutical	Bhalani Publishing House, 2014 by
		products	6. Husain A, Practical
5	Extraction and detection of	To understand different	Pharmaceutical
)	antimicrobial compounds from	method of extraction.	Analytical Techniques,
	plant origin	To know antimicrobial	Darshan Publishers,
	plant origin	compounds from plant	2015
		origin.	7. Indian Pharmacopeia,
		To know the diffusion of	2007, Volume 1,
		antibiotic and factors	Published by The Indian
		affecting it	Pharmacopeia
5	Determination of glucose in	To estimate the	Commission,
	serum/plasma by GOD/POD		Ghaziabad; Tests for
	method	samples.	pyrogens
		The correlation of glucose	17 6
		concentration with	
		different clinical conditions	
7	Determination of endotoxin in	To know endotoxin of	
	the therapeutic formulation	bacterial origin, its	
	(WFI, gentamycin injection	structure and their role.	
	ampicillin injections) by using	To learn Significance of	
	LAL test reagent	LAL test at commercial	
		level	
3	Determination of SGPT/SGOT	To estimate the	
	activity in serum / plasma	concentration of SGOT	
	sample by chemical method	and SGPT in samples.	
		To learn importance of	
		•	
		SGPT and SGOT activity with functional test	

PPU
Dr. D.Y. PATIL VIDYAPEETH, PUNE

		The correlation of glucose concentration with different clinical conditions	
9	LIMIT test for chloride, sulphates, iron and heavy metals in pharmaceutical products.	To learn threshold level of ions in the pharmaceutical products. To understand the significance of LIMIT test at commercial level	
10	One day industrial visit to a pharmaceutical company	To understand the commercial production of biopharmaceutical products	

Internal evaluation will be based on following criteria

For practicals of 2 credits and 100 marks, internal evaluation will be for 40 marks with following break-up:

Practical: 10 marks

Attendance: 10 marks (above 80% attendance gets full marks)

Laboratory assignment: 10 marks

Journal writing: 10 marks

SEMESTER VIII

Sr.	PROJECT	CREDITS
No.		
1	Industrial Posting or Research	
2	Project Preparation	
3	Monthly review of the work	25
4	End Semester Evaluation of the Project report and	
	Presentation and Viva voce	